
Complex Networks



Introduction

Brief historical overview:

1736 Graph theory (Euler)
1937 Journal Sociometry founded
1959 Random graphs (Erdős-Rényi)
1967 Small-world (Milgram)
late 1990s “Complex networks” 



Complex Networks Research
Rapidly increasing interest over the last decade, since 
much more network data available now:
• Internet
• Biological networks, e.g. 

– Genetic networks
– Food webs

• Social networks (e.g. Facebook, Twitter)
• Transport networks
• Mobile phone networks

Many show very similar features!



Describing a network formally
N nodes and E edges,

where E ≤ N(N-1)/2 

N = 7, E = 9

Note: In graph theory language this graph is of order 7 and size 9.



Directed networks

More edges: E ≤ N(N-1)

Much more complex topology.



Adjacency matrix
The most convenient way of describing a 

network is the adjacency matrix aij. 

A link between node i to node j is recorded by a 
‘1’ in the ith row and the jth column.



Adjacency matrix
Undirected networks 
have a symmetric
adjacency matrix
aij = aji.

Directed networks in 
general have 
asymmetric aij.



Self-interactions

Networks also can have self-interactions, which 
correspond to the diagonal entries aii.

If we allow self-interactions, we can have up to 
E = N2 edges.



Weighted networks
In a weighted network a real number is attached to each 
edge, so that we obtain a real adjacency matrix, usually 
denoted as wij.



Distance matrices

Something worth noting:

Define any distance measure on a set of 
objects. 

This leads to a distance matrix, which is 
just the adjacency matrix of a fully 
connected weighted network.



Degree
In an undirected network the degree ki of a node 
i is the number of nodes i is connected to:

ki = Sj aij = Sj aji

Here k1 = 2, k2 = 4, k3 = 1, k4 = 3 and k5 = 2.



In-degree and out-degree
In a directed network the in-degree ki

(in) of a node 
i is the number of directed edges pointing to
node i:

ki
(in) = Sj aji

while the out-degree ki
(out) of a node i is the 

number of directed edges pointing from node i:

ki
(out) = Sj aij



In-degree and out-degree
Thus, in a directed network, nodes can be 
highly connected, yet also isolated (e.g. in terms 
of sending or receiving information.) 



Citations
The network of scientific citations provide examples 
illustrating two extremes: 

High in-degree and low out-degree:
much-cited research article

Low in-degree and high out-degree:
Book or review article



Strength
In a weighted, undirected network the strength is the 
sum of the weights for the edges connecting to a node:

si = Sj wij = Sj wji

Hence s1 = 4, s2 = 18, s3 = 2, s4 = 13 and s5 = 15.



Erdős-Rényi networks
Random graphs studied by Paul Erdős and Alfred 
Rényi (1959): 

Uniform probability p of two nodes i,j being connected.

Two different realizations for N = 5 and p = 0.5.



Erdős-Rényi networks
Some properties of E-R networks:

Average number of edges (= size of graph): 

E = p N (N - 1) / 2

Average degree: 

〈k〉 = 2 E/N = p (N - 1) ≃ p N



Erdős-Rényi networks
The degree distribution Pk is a quantity of great interest in 
many networks, as we shall see later.

For E-R networks, in the limit of large N, it is given by:



Scale-Free networks
In a scale-free network

a) Many nodes have few connections and a few nodes 
have many connections.

b) This observation holds on the local and global scale 
of the network.

In other words, there is no inherent scale.  



Scale-Free networks
Formally this translates into a power-law degree distribution: 

P(k) = k -g

Examples: Actors, WWW, power grid
Image: Barabási and Albert, Science 286, 510 (1999)



Scale-Free networks
Typical values of exponent g observed:

Network g

Co-authorship 1.2
Internet 2.1
Yeast protein-protein 2.4
Word co-occurrence 2.7



Preferential attachment
Presented by Barabási & Albert [Science 286, 509 (1999)]:

Probabilistic network growth model which produces 
scale-free networks.

Add new node and attach it to m existing nodes, where 
the probability of attaching it to a particular node i is:

pi = ki / Sj kj



Preferential attachment
Nodes: N = N0 + t
Edges: E = m t

Since one node and m edges are added per timestep.

What is the degree distribution for the B-A model?

Can get an answer by considering k as a continuous 
variable.



Preferential attachment

The variation of degree with time is given by:

which for a node i joining at time ti has the solution:



Preferential attachment

By considering the probabilities:

and given that at time t:



Preferential attachment
Hence we arrive at:

which gives us a scale-free degree distribution with a 
power-law exponent of -3, in other words g = 3. 

Modified preferential attachment models lead to other g
values.



Arbitrary degree distributions
Newman et al. proposed a model to obtain random
graphs with arbitrary degree distributions, by using a
generating function approach.

G0(x) = Sk pk xk

Phys. Rev. E 64, 026118 (2001)



Generating function approach
The generating function

G0(x) = Sk pk xk

contains all information about the distribution of pk, 
since 

pk = (1/k!) dkG0/dxk |x=0



Generating function approach
Many properties of the network can be derived from 
this generating function, such as 

- Average degree: 〈k〉 = Sk k pk = G0’(1)

- Average number of second-nearest neighbours:

〈k2nd〉 = G0’’(1)
(But this doesn’t generalize simply)

- Clustering coefficient (we will come to this later)



Assortativity
Assortativity describes the correlation between the degree
of a node and the degree of its neighbours.

Networks in which highly connected nodes are linked to
other nodes with a high degree are termed assortative.
Such networks include social networks.

Networks in which highly connected nodes are only
linked to nodes with a low degree are termed
disassortative. Such networks include the World Wide Web
and biological networks.



Assortativity Coefficient
One way of measuring assortativity is to determine the Pearson
correlation coefficient between the degrees of pairs of connected
nodes. This is termed the assortativity coefficient r:

r = (1/sq) Sjk jk (ejk – qjqk)

where qj and qk are the distributions of the remaining degrees* j
and k, when following a randomly selected edge. This can be
defined in terms of the degree distribution pk as:

and where ejk is the joint probability distribution of pairs of nodes
with remaining degrees j and k at either end.
*remaining degree = degree minus one (the edge connecting the nodes)



Assortativity Coefficient
The value of r lies between: 

-1 (disassortative) and 1 (assortative).

Some values for real networks:

Physics coauthorship: 0.363
Company directors: 0.276

Internet: -0.189
Marine food web: -0.247



Nearest-neighbour degree
The nearest neighbour degree knn of a node i is the average
degree of the neighbours of i.

The average nearest neighbour degree 〈knn〉 is knn averaged
over all nodes of the same degree k.

Assortativity can also be measured by plotting the average
nearest neighbour degree 〈knn〉 as a function of the degree
k.

An increasing slope indicates assortativity while a
decreasing one signals disassortativity.



Distance
The distance between two nodes i and j is the length of 
the shortest path connecting the two nodes.

dij = 4



Diameter
The diameter of a network is the largest distance in the network - in 
other words it is the length of the longest shortest path connecting 
any two nodes.

D = 2                D = 1

Note: Fully connected networks (like the one on the right) have 
diameter D = 1.



Clustering coefficient
The clustering coefficient measures how densely connected the 
neighbourhood of a node is. 

It does this by counting the number of triangles of which a given node i is 
a part of, and dividing this value by the number of edge pairs. 

ci = [2/ki (ki - 1)] Sjk aij ajk aik

Often the clustering coefficient is averaged over the entire network:

C = (1/N) Sijk [2/ki (ki - 1)] aij ajk aik

Where N is the number of nodes.



Small-world networks
Watts and Strogatz (1998) consider a locally connected network 
and randomly rewire a small number of edges.

The probability of rewiring p ‘tunes’ the network between a regular 
lattice (p = 0) and a random (Erdős-Renyi) graph (p = 1).

Image: Watts and Strogatz, Nature 393, 440 (1998)



Small-world networks
As the rewiring probability p increases, the average distance 
between two nodes falls drastically, while the clustering remains 
largely unchanged until p gets a lot larger. 

L ≥ Lrandom

C  >> Crandom

Image: Watts and Strogatz, Nature 393, 440 (1998)



Small-world networks

Examples of small-world networks:

Lactual Lrandom Cactual Crandom

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
Neural network 2.65 2.25 0.28 0.05

Watts and Strogatz, Nature 393, 440 (1998)



Small-world networks
Thus small-world networks are signified by small 
average distances, similar to random graphs, but much 
higher clustering coefficients than random graphs.

Such networks are termed small-world, in analogy to the 
“small-world phenomenon” which proposes that, 
roughly speaking, every person is connected to every 
other person by at most six connections. 

The small-world property cannot be detected at the 
local level, as the random rewiring does not change the 
clustering coefficient.



Betweenness
The rather awkward word betweenness is a measure of the 
importance of a node or edge. 

The most widely used is shortest-path betweenness:
Consider a pair of nodes, and all shortest paths between them. 
For any given edge or node in the network, we can determine 
the fraction of these shortest paths which pass through it. The 
shortest-path-betweenness is the sum of these fractions over 
all pairs. 

Other forms include random-walk betweenness and current-flow 
betweenness.



Betweenness: an example
While betweenness of a given node or edge is calculated 
over all pairs of nodes, consider the contribution 
associated with one particular node (s below):

(a) In a tree, the betweenness 
is rather straightforward.

(b) In a network with loops,
the betweenness becomes
more complicated, e.g.
25/6 = 1 + 1 + 1 + 1/2 + 1/3 + 1/3 

Image: Newman and Girvan, PRE 69, 026113 (2004)



Community detection
Betweenness can help us to detect communities in networks. 

Famous: The Zachary Karate Club network

Image: Newman and Girvan, PRE 69, 026113 (2004)



Community detection
Newman and Girvan (2002) proposed a simple algorithm:

1) Calculate the betweenness of all edges in the network.

2) Remove the edge with the highest betweenness.

3) Recalculate the betweenness.

4) Continue at 2) until no edges are left.

The disconnected components of the network form a suggested
partition into communities at each iteration.



Community detection
The network fragmentation achieved using this process suggests 
many possible partitions of the network into communities. Which 
one is the best one? 

Image: Newman and Girvan, PRE 69, 026113 (2004)



Community detection
The network fragmentation achieved using this process suggests 
many possible partitions of the network into communities. Which 
one is the best one? 

Image: Newman and Girvan, PRE 69, 026113 (2004)



Modularity
The modularity of a network measures the quality of a 
given partition of the graph into sets Si.

It does so by comparing the total number of connections 
within a set to the number of connections which would 
lie within this set by chance.

Given nc sets, consider the nc×nc matrix eij which 
contains the fraction of the total number of edges which 
connect communities i and j. 



Modularity
Thus the total fraction of edges connecting to nodes in set i is: 

ai = Sj eij 

And if the edges were independent of the sets Si, then the 
probability of an edge connecting two nodes within the same set 
would be 

ai
2 = ( Sj eij )2

The actual fraction of edges internal to a set is eii, so that the 
summed difference of the two gives us a measure of modularity:

Q = Si [eii - ( Sj eij )2 ]



Using modularity
When using the betweenness-based Newman-Girvan algorithm to 
find communities, the modularity Q can be used to evaluate which 
partition is the most meaningful:

Image: Newman and Girvan, PRE 69, 026113 (2004)



Network vulnerability
In many real-world networks it is of interest to measure 
the network’s vulnerability to attacks or random failure.

One of the best-known results in this context is the 
observation that the degree of proteins in a protein-
protein interaction networks is positively correlated with 
the lethality of the protein.

This implies that the highest-degree nodes are the ones 
whose removal would cause the most disruption.

Jeong et al., Nature 411, 41 (2001).



Network vulnerability
Betweenness is also a useful measurement of the 
vulnerability of a network node or edge. 

The removal of an edge or node with high betweenness 
is likely to disrupt the dynamics of flow across the 
network significantly.

In fact the strategy of removing nodes according to the 
Newman-Girvan algorithm is also one which damages 
the network very effectively (Holme et al., 2002).



Network vulnerability
Scale-free networks are very robust against random removal of 
nodes, but very vulnerable to any targeted attacks.

Random graphs on the other hand are equally sensitive to both 
forms of disruption. 

Image: Albert et al., Nature 406, 378 (2000)

N
et

w
or

k 
di

am
et

er

Fraction of nodes removed



Hierarchical networks
Scale-free networks generated using preferential 
attachment have low clustering coefficients.

Some networks such as metabolic networks however 
have high clustering coefficients as well as scale-free 
topologies. 

New category of networks: Hierarchical networks, 
characterized by a scale-free structure of densely 
connected modules.



Hierarchical networks
Hierarchical networks can be formed by 
simple algorithms such as the following:

1) Start with a module (small graph) with 
a central node and peripheral nodes. 
2) Make m copies of the module.
3) Connect the central nodes of the copies 
to each other.
4) Connect the peripheral nodes of the 
copies to the central node of the original.
5) This is the new module, with the 
original central node as its central node. 
6) Repeat from 2).

Image: Ravasz et al., Science 297, 1551 (2002)



Hierarchical networks
In hierarchical networks we 
observe: 

C(k) ~ k-1

In other words we have small 
densely connected modules 
(small k, large C), connected 
through hubs (large k, small C).  

Several metabolic networks 
show this behaviour (see right).

Image: Ravasz et al., Science 297, 1551 (2002)



Rich clubs
The so called rich-club phenomenon describes a network in which a 
small number of nodes with high degree are densely connected with 
each other.

The rich-club coefficient is calculated as follows:

1) Rank the nodes by degree, and normalize this rank by dividing by 
the total number of nodes N. This normalized rank is r.

2) The rich-club coefficient f (r) is the fraction of realized edges 
among the nodes of rank r or lower (i.e. higher in the ranking).

Zhou & Mondragon. IEEE Comm. Lett. 8, 180 (2004).



Rich clubs

But this is not enough. Since hubs are more likely to be connected to 
each other we need to compare the rich club to that of a randomized 
network with the same degree distribution.

We can achieve this e.g. using double-edge swaps.

Dividing by the randomized coefficient gives us a normalised
coefficient. 

If this is greater than 1 we have a rich club.
Colizza et al., Nat. Phys. 2, 110 (2006).



Rich clubs LETTERS
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Figure 2 Assessment for the presence of the rich-club phenomenon in the networks under study. φ (k ) is compared with the null hypothesis provided by the maximally
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networks. We find a clearly opposite result in the decreasing
behaviour of the rich-club spectrum for the protein interaction
network and the Internet map at the autonomous system level. In
both cases, this evidence provides interesting information about the
system structure and function.

The lack of rich-club ordering in the protein interaction
network indicates that proteins with large numbers of interactions
are presiding over different functions and thus, in general, are
coordinating specific functional modules (whose detailed analysis
requires specific tools19). Figure 3 shows portions of the protein
interaction network and the scientific collaboration network
including the club of N>k nodes (N>k = 29 and N>k = 35
for the protein interactions, N>k = 30 and N>k = 36 for the
scientific collaboration) and the connections among them. The
network representations clearly show the presence of a rich-club
phenomenon in the scientific collaboration network, where most of
the rich nodes are highly interconnected forming tight subgraphs,
in contrast to the protein interaction network case, where only
a few links seem to connect rich nodes, the rest linking to
lower-degree vertices.

In the case of the Internet, the appropriate analysis of the
rich-club phenomenon shows that, in contrast to previous claims7,

the structure at the autonomous system level lacks rich-club
ordering. This might seem counter-intuitive. It is reasonable to
imagine that the Internet backbone is made of interconnected
transit providers that are also local hubs. This, however, is not the
case and an explanation can be easily found in the fact that we are
just considering topological properties. Indeed, the backbone hubs
are identified more in terms of their bandwidth and traffic capacity
than in terms of the sole number of connections. The present
result suggests that high-degree hubs provide connectivity to the
local region of the Internet and are not tightly interconnected. The
backbone of interconnected transit providers is instead identified
by high-traffic links, which play a crucial role in terms of traffic
capacities but whose number might represent a small fraction of
the total possible number of interconnections.

This discussion points out that, in some cases, the concept of
rich-club ordering should be generalized to evaluate the richness of
vertices not just in terms of their degree but in terms of the actual
traffic or intensity of interactions handled. In this case, we have to
consider a weighted network representation of the system where
a weight wij representing the traffic or intensity of interaction is
associated with each edge between the vertices i and j. Also in this
case, however, the study of the weighted rich-club coefficient alone
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networks. We find a clearly opposite result in the decreasing
behaviour of the rich-club spectrum for the protein interaction
network and the Internet map at the autonomous system level. In
both cases, this evidence provides interesting information about the
system structure and function.

The lack of rich-club ordering in the protein interaction
network indicates that proteins with large numbers of interactions
are presiding over different functions and thus, in general, are
coordinating specific functional modules (whose detailed analysis
requires specific tools19). Figure 3 shows portions of the protein
interaction network and the scientific collaboration network
including the club of N>k nodes (N>k = 29 and N>k = 35
for the protein interactions, N>k = 30 and N>k = 36 for the
scientific collaboration) and the connections among them. The
network representations clearly show the presence of a rich-club
phenomenon in the scientific collaboration network, where most of
the rich nodes are highly interconnected forming tight subgraphs,
in contrast to the protein interaction network case, where only
a few links seem to connect rich nodes, the rest linking to
lower-degree vertices.

In the case of the Internet, the appropriate analysis of the
rich-club phenomenon shows that, in contrast to previous claims7,

the structure at the autonomous system level lacks rich-club
ordering. This might seem counter-intuitive. It is reasonable to
imagine that the Internet backbone is made of interconnected
transit providers that are also local hubs. This, however, is not the
case and an explanation can be easily found in the fact that we are
just considering topological properties. Indeed, the backbone hubs
are identified more in terms of their bandwidth and traffic capacity
than in terms of the sole number of connections. The present
result suggests that high-degree hubs provide connectivity to the
local region of the Internet and are not tightly interconnected. The
backbone of interconnected transit providers is instead identified
by high-traffic links, which play a crucial role in terms of traffic
capacities but whose number might represent a small fraction of
the total possible number of interconnections.

This discussion points out that, in some cases, the concept of
rich-club ordering should be generalized to evaluate the richness of
vertices not just in terms of their degree but in terms of the actual
traffic or intensity of interactions handled. In this case, we have to
consider a weighted network representation of the system where
a weight wij representing the traffic or intensity of interaction is
associated with each edge between the vertices i and j. Also in this
case, however, the study of the weighted rich-club coefficient alone
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Some real-world networks show rich clubs and some do not:

Colizza et al., Nat. Phys. 2, 110 (2006).



Network motifs
Network motifs are subgraphs of a few nodes which 
appear in directed networks more often than would be 
expected by chance.

Image (top): Milo et al., Science 303, 1538 (2004)



Network motifs
To evaluate whether their number is higher than would be expected 
by chance, the networks are randomized by swapping two inputs or 
two outputs. 

This gives rise to a network with the same in- and out-degrees as the 
original network.

Image: Milo et al., Science 298, 824 (2002)



Superfamilies
Alon (2004) showed that the frequency signatures of network motifs 
classify networks into superfamilies. 

Image: Milo et al., Science 303, 1538 (2004)



Superfamilies
What does this mean? Feed-forward loop is important in transcription 
networks and other regulatory networks.

Image: Milo et al., Science 303, 1538 (2004)



Superfamilies
…and feedback loops seem to be bad?

Image: Milo et al., Science 303, 1538 (2004)



Transition matrix
A transition matrix can be defined by:

N = K-1 A

where K is the diagonal matrix with the degrees ki on 
the diagonal:

kij = dij ki = dij Sk aik

and where A is the adjacency matrix.



Transition matrix
In a transition matrix, all edges emanating from one node are 
divided by the degree, which corresponds to giving them a 
uniform probability.

The transition matrix thus describes the way a random walker 
would traverse the network, if we left-multiply a row vector. 
More about this later.



Transition matrix
We can write N also as:

nij = aij/ki

Because all the entries in a row of N add to one, any constant 
vector b given by: 

bi = c ∀i

will be a (right-)eigenvector of N with eigenvalue 1:

(N b)i = Sj nij bj = Sj aij bi/ki = c Sj aij /ki = c = bi

since ki = Sj aij, so that N b = b.



Transition matrix
Although N is not symmetric, all the eigenvalues x of the transition 
matrix are real, since:

N x = l x  (eigenvector equation)

Left-multiplying both sides by K1/2 gives:

K1/2 N x = K1/2 l x

Introducing x’ = K1/2 x and thus x = K-1/2 x’ we get:

K1/2 N K-1/2 x’ = K1/2  l K-1/2 x’



Transition matrix
(cont’d)

We had:
K1/2 N K-1/2 x’ = K1/2  l K-1/2 x’

And since N = K-1 A (RHS) and K1/2  K-1/2 = I (LHS) we get:

K-1/2 A K-1/2 x’ = l x’

So that the eigenvalues l of N are shared by the symmetric matrix 
K-1/2 A K-1/2 and hence must be real.



Transition matrix
But a constant vector is only an eigenvector of N if the network is
connected.
If a network consists of n disjoint subgraphs (or n connected
components), we get a degeneracy of n eigenvalues equals to 1.

The corresponding eigenvectors have constant entries 

bi = c

for nodes i that are part of the component, and

bi = 0
for all other i.



Transition matrix
Division of a network into two connected components:

These two eigenvectors of N correspond to the 
degenerate eigenvalues l = 1. 



Transition matrix
The largest eigenvalue N can have is l = 1.

One way of obtaining the eigenvector x corresponding to
the largest eigenvalue of a matrix N is to raise it to the
power of m where m → ∞ and apply it to (almost) any
vector y.

Nm y → x as m → ∞

Since any vector can be expressed in terms of an
eigenvector expansion, the eigenvector(s) with the
largest eigenvalue eventually dominate. Which of the
eigenvectors with eigenvalue 1 we end up with depends
on our starting vector y.



Laplacian matrix
The Laplacian matrix is a similarly useful matrix defined by:

L = K - A



Laplacian matrix
The matrix L can also be written as:

lij = dij ki - aij

from which we can quickly deduce that constant vectors b with bi = 
c are eigenvectors of L with eigenvalue 0: 

(L b)i = Sj lij  bj = Sj dij ki bj - Sj aij bj = c Sj dij ki - c Sj aij = 0

since ki = Sj aij.



Laplacian matrix
Hence the eigenvectors which identified connected components 
with l = 1 in N correspond to l = 0 eigenvectors of L.

With L we can also identify communities - meaning subgraphs 
which to a good approximation form separate connected 
components and are only linked by a few connections.

The degeneracy of l = 0 eigenvalues is broken and we get one 
trivial eigenvector which is entirely constant as well as the first 
non-trivial eigenvector with l close to zero, which for m
communities is split into m sets of equal or almost equal values.



Eigenvector centrality
Eigenvector centrality is another way of assessing the 
importance of a node in a network. It is constructed as 
follows:

Consider a measure of importance xi of every node i, 
which fulfills the following condition:

We want the importance of each node to be proportional to the 
sum of the importance of its neighbours.

This is a recursive, and thus very elegant, definition.



Eigenvector centrality
One way of writing this is:

xj∝ Si xi Aij

With a constant of proportionality 1/l this becomes the 
eigenvector equation:

l x = x A

Hence an eigenvector of the adjacency matrix gives us the 
importance values of each node.

But which eigenvector?



Eigenvector centrality
It is the eigenvector with the largest eigenvalue, since - according to the 
Perron-Frobenius theorem - this is the only one guaranteed to be entirely 
non-negative.

We know how to get this eigenvector: By raising a matrix to a power m
where m → ∞, this time the adjacency matrix. 

Applying the adjacency matrix to a constant vector of ones will be 
equivalent to every node passing a ‘vote’ to every neighbour. 

When applying the adjacency matrix again, let every node pass as many 
‘votes’ as it has received to each neighbour. 

While the total number of votes grows, the normalized distribution of 
votes will become more and more similar to the eigenvector of the largest 
eigenvalue, which gives us the eigenvector centrality.



The PageRank algorithm
Now consider our transition matrix we discussed earlier:

N = K-1 A

What we did before was to right-multiply N, but if we left-multiply it 
by a row-vector v, then this gives us the average occupancy of a set 
of random walkers with initial configuration v, after one time step. 

As we apply the matrix N to this vector repeatedly, we model the 
probability distribution of the walker, which eventually becomes the 
left-eigenvector of the largest left-eigenvalue and the equilibrium 
walker occupancy across the network.



The PageRank algorithm
The PageRank algorithm which powers the Google search engine is 
very similar to this: 

The only difference is that the adjacency matrix A is now directed, 
and its entries are normalized by the out-degree ki

(out): 

nij
(PR) = aij/ki

(out)

or
N(PR) = Kout

-1A



The PageRank algorithm
Thus we can again consider a random walk on the network, 
governed by this time by the transfer matrix N(PR), with the 
eigenvector solution

p = pN(PR)

Where the entries of eigenvector p are the PageRank values. 

The PageRank values can be considered as the long-term 
distribution of random walkers across the network.   

Note that we need to cut out any dangling nodes with zero out-
degree (of which there are many in the WWW).



The PageRank algorithm
Solving an eigenvalue problem for a matrix with billions of rows 
and columns like the WWW would be, is impossible analytically. 

What is done in practice, is to apply the power method which we 
have mentioned before - in other words to apply the matrix N(PR)

iteratively.

However, there is a danger of the evolution being trapped due to 
subgraphs such as this one:



The PageRank algorithm
The way to avoid these trapped states is to make random jumps to 
other nodes possible, with a small probability. 

This corresponds to creating a new transfer matrix

N’(PR) = aN(PR) + (1 - a)E

where E is a matrix with eij = 1/N with N being the number of 
nodes and 1-a being the probability of a random jump. 

The eigenvector of this matrix N’(PR) corresponds to the original 
PageRank proposed by Sergey Brin and Larry Page in 1998.



The PageRank algorithm
A few things worth noting:

•The random jump capability is sometimes also interpreted as an 
attenuation or damping factor, representing the fact that a random surfer on 
the web will stop clicking at some point. 

•The modified matrix N’(PR) without trapped states is called irreducible and 
there exists a unique solution for the power method, which is the 
eigenvector corresponding to the largest eigenvalue.

•PageRank vectors are usually normalized to 1, which is why the 
PageRank equation is sometimes written as:

PR(vi) = (1 - d)/N + d Sj PR(vj)/L(vj)

where PR(vj) and L(vj) are the PageRank and out-degree of vertex j.



A new impact factor
The PageRank algorithm has been applied to other systems apart 
from the World Wide Web. 

Most notably, a paper by Bollen, Rodriguez and Van de Sompel 
(BRV) applies it to the network of journal citations in order to 
create a new kind of impact factor. 

Traditionally the impact factor as defined by the company ISI is 
simply the average number of citations per paper which a journal 
receives over the preceding two years. 

This is quite a crude measure, since it does not reflect the quality of 
the citations. 



A new impact factor
An important difference between the WWW and journal citations 
is that the network of journal citations is a weighted matrix wij. This 
leads to a definition of the weighted PageRank transfer matrix 
N(wPR) as:

nij
(wPR) = wij/si

(out)

where 
si

(out) = Sj wij

is the out-strength of node i. 

What this means is simply that the random walker now is more 
likely to go to some journals than others, proportional to their relative 
share of citations. Other than that the algorithm is the same.



A new impact factor
The BRV paper distinguishes popularity of a journal, 
which is simply its number of citations, or in-degree, 
and the prestige.

The ISI impact factor is an indicator of the popularity of 
a journal, while the PageRank indicates its prestige.

BRV suggest a combined measure which is the product 
of the two: 

Y(vi) = IF(vi) × PRw(vi)



A new impact factor
Ranking journals by the Y-factor gives an intuitively 
sensible picture:

from: Bollen et al., Scientometrics 69 (3) (2006)



A new impact factor
Popular and prestigious journals in physics*:

*ranked by IFD , the deviation from the ISI IF linear regression 
shown as a solid line in the IF vs. PRw plot.

from: Bollen et al., Scientometrics 69 (3) (2006)



A new impact factor
Also very 
interesting:

PRw vs. IF

from: Bollen et al., Scientometrics 69 (3) (2006)



A new impact factor
While there is some correlation between the ISI IF and 
weighted PageRank, there are significant outliers which 
fall into two categories: 

Popular Journals - cited frequently by journals with 
little prestige: high ISI IF, low weighted PageRank

Prestigious Journals - not frequently cited, but when 
they are, then by highly prestigious journals: 
low ISI IF, high weighted PageRank



Boolean networks
Often we are not only interested in the topological
properties of a network, but also in its dynamical
properties.

Dynamic processes take place on many networks. The
nodes interact and their state changes as a result of
these interactions.

One of the simplest models of a dynamical network is
the Boolean network.



Boolean networks
A Boolean network is directed, and each node is in one
of two states, 0 or 1.

Furthermore, each node has a set of rules which tell it
its state depending on the states of its neighbours in the
network.

This set of rules is called a Boolean function and consists
of a bit string of length 2k where k is the number of
inputs (i.e. the in-degree) of the node.



Boolean networks: Example
Consider a three node directed network where each
node is in state 0 or 1, for example:

Now we need a dynamic rule for each node which tells
it what state to be in, depending on the state of the
nodes it gets inputs from.



Boolean networks: Example
Node Y has one input, coming from node 1.

Node X can be in state 0 or in state 1.

And node Y can respond accordingly, in four different ways:

State of node X: 0 1

Responses of node Y:
0 0 (independent of node X)
0 1 (copy node X)
1 0 (do the opposite of node X)
1 1 (independent of node X)



Boolean networks: Example
Thus node Y has four possible rules of length two: 00, 01, 10 and 11.

Such rules which list a response for every possible input are called 
Boolean functions.

In general a node with k inputs (i.e. in-degree k) will have a Boolean 
function of length 2k.

Hence our Boolean network is fully specified if 
we add three Boolean functions of length one, 
two and four to nodes X, Y and Z, respectively.



State space
A Boolean network of n nodes can be in one of 2n states. As the 
rules are applied at each time step, the state of the network moves 
through state space.



Attractors and basins

The state space of a 
given Boolean network 
is partitioned into one 
or more attraction 
basins, each of which 
lead to an attractor cycle.



Basin entropy
An interesting measure of dynamical complexity which has been proposed 
by Shmulevitch & Krawitz (2007) is the basin entropy of a Boolean network. 

This is simply the entropy S of the basin size distribution, so that for a N
node network whose 2N states are divided into M attraction basins of size bi
we have: 

S = - SM (bi/2N) ln (bi/2N)

We have low entropy when there is only one basin, and high entropy when 
there are many similarly sized basins.

The authors suggest that the entropy S is a measure of the dynamical 
complexity of the Boolean network.



Basin entropy
We can calculate the basin entropy for the 13 motifs in Alon’s original 
analysis, and show that the observed frequency is inversely proportional to 
the dynamical complexity.

producing many different cycle lengths in their dynamical
behaviours. Motifs with no feed-forward loops and no two-
node or three-node feedback loops have universally low Ct

values (figure 3a, pink), while motifs with feed-forward loops
and three-node feedback loops have universally high Ct

values (figure 3d, purple). Note that there are motifs with
four and five edges in both of these extreme categories, which
shows how much the dynamical complexity of a motif depends
on the arrangement, rather than the number, of its edges.

Similarly, figure 4 shows the average basin entropy Sav of
the 104 motifs as a function of the number of edges, for the
four structural categories. The largest values of the basin
entropy are displayed by motifs with 1-node feedback
loops (figure 4a, in pink). Note that the five motifs that
have no loops of any kind have average basin entropy
Sav ¼ 0. These are in the same structural category as the
1-node feedback loops, and are represented in figure 4 by
the three points at Sav ¼ 0 and 0, 1 and 2 edges. For a given
number of edges, motifs that contain a feed-forward loop
and no three-node feedback loops tend to display lower Sav

values (figure 4c, in blue), and motifs that contain two-
node and three-node feedback loops and no feed-forward
loop display higher Sav values (figure 4b, red). Motifs that
contain both feed-forward loops and three-node feedback
loops exhibit relatively low basin entropy for a given
number of edges, but the total range of Sav values narrows
considerably with increasing numbers of edges (figure 4d,
purple). These results show that the average basin entropy
offers a complementary definition of dynamical complexity
to Ct. Between them these two measures reveal that there is
indeed a strong connection between certain structural charac-
teristics of a motif and aspects of its dynamical behaviour.
The values of Sav and Ct for all 104 motifs can be found in
the electronic supplementary material.

2.3. Real-world regulatory networks
We now consider a subset of the 104 motifs, namely the
13 connected motifs without self-interactions. This important
subclass is of interest as it has been studied extensively in the
literature, and was the basis for the seminal work on network
motifs, by Alon and co-workers [1,2]. The frequencies of
these 13 motifs, relative to a null model, were used to
define ‘superfamilies’ of networks that exhibit similar motif
frequency distributions. One such superfamily included
signal-transduction networks in mammalian cells, neural
networks and transcription networks. The enrichment signa-
ture across the 13 motifs, expressed in the form of a z-score to
show the deviation from the null model, is adapted directly
from [2] in figure 5a. In figure 5b,c, we show the values of
Sav and Ct, respectively, for the same motifs, plotted on an
inverted scale. The enrichment profiles show a striking simi-
larity to those of Sav and Ct, which becomes even clearer if we
compare the gradients of the series rather than the absolute
values. The Pearson correlation between the successive
changes in basin entropy and those in the motif enrichments
for real-world networks is 20.7862 ( p-value: 3.54 ! 10211),
and the equivalent correlation for the number of cycle lengths
is 20.8166 ( p-value: 1.50 ! 10212). If we compare the profiles
with the structural classification of the motifs, shown under-
neath them in figure 5, we see that the lower values of the
motif enrichment (and, correspondingly, the higher values
of the basin entropy and cycle length number, plotted on

an inverted scale) occur when the motif contains a three-
node feedback loop (motifs 8, 11, 12 and 13 in figure 5) and
to a lesser extent when it contains a two-node feedback
loop (motifs 4, 5, 6). This indicates that feedback loops are
suppressed in these networks relative to the feed-forward
loop. The close correlation with the dynamical complexity
of Boolean network motifs as measured by the basin entropy
suggests that the fragmentation of state space may be a
reason why the feedback loop motif appears to be less desir-
able in real-world regulatory networks. Only those triangle
motifs (7, 9 and 10) which do not contain any feedback
loops are highly enriched. These results also underline the
importance of the feed-forward loop, which has been estab-
lished as an important building block of biological
networks [3]. Note that while Sav and Ct are strongly corre-
lated (Pearson: 0.8705) for the 13 connected motifs without
self-interactions, they are only weakly correlated (Pearson:
0.4092) across all 104 motifs.
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Figure 5. This figure compares the average basin entropy Sav and the total
number of distinct cycles Ct with the enrichments, in four real-world regu-
latory and neural networks, of the 13 connected three-node motifs
without self-interactions. The four networks are two developmental transcrip-
tion networks in fruit fly and sea urchin, a signal-transduction network of
mammalian cells, and the neural network of Caenorhabditis elegans. These
data are adapted directly from the seminal study of these 13 motifs in [2]
and were kindly made available by the authors of this work. (a) The enrich-
ment profiles for these networks are shown relative to a null model, in the
form of a z-score. Note that the motifs without any feedback loops (7, 9 and
10) are the most prevalent. (b) The values of the basin entropy Sav are shown
for the same motifs on an inverted scale, and exhibit a striking similarity to
the motif z-scores. On this inverted scale, the former shows a slight down-
wards trend with increasing edge number in the motifs, whereas the latter
shows a slight upwards trend. The successive gradients of these two profiles
however match almost perfectly. To separate the effects of edge number from
other characteristics of motif structure, we compare the successive differences
in z-score between motifs DZ with the differences in average basin entropy
DSav and find that these show a strong correlation with a Pearson coefficient
of 20.7862. (c) The values of Ct, the total number of distinct cycle lengths,
for these motifs, which follow a similar pattern to the z-scores and Sav. The
correlation of the successive differences DZ and DCt is similarly high
(20.8166). Note that Ct, like Sav, is shown on an inverted scale.
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Kauffman networks
Kauffman networks (1969) are a particular class of Boolean 
network, in which: 

1) N nodes are connected randomly such that each node has in-
degree K. 

2) The Boolean functions of length 2K on each node are also 
random.

Random Boolean networks (RBNs) are sometimes termed
NK networks (not to be confused with Kauffman’s NK model).



Kauffman networks
The most interesting Kauffman networks have K = 2. In this case we have 
16 possible Boolean functions, which we can divide into four categories:

Frozen: 0000, 1111
Canalyzing (C1): 0011, 1100, 0101, 1010
Canalyzing (C2): 0001, 0010, 0100, 1000, 1110, 1101, 1011, 0111
Reversible: 0110, 1001

The frozen functions ignore both inputs. 
The canalyzing ones ignore one input completely (C1) or at least 
some of the time (C2). 
The reversible ones never ignore any inputs, and are thus the only 
ones which do not lose information.



Kauffman networks
Kauffman networks as a whole can be in two phases, frozen and
chaotic:

Frozen phase - Any perturbation travels on average to less than one 
node per time step.

Chaotic phase - Any perturbation travels on average to more than 
one node per time step. 

In the chaotic phase the distance between two states increases 
exponentially with time, even if they are very close to start with.

Networks on the boundary between the frozen and chaotic phases 
are termed critical.



Critical networks
At K = 2, we need a perturbation to be passed on with probability p = 1/2 
for the network to be critical, since we have two inputs and want to pass on 
a perturbation to one node on average. 

•Frozen functions pass perturbations on with zero probability, 

•Canalyzing functions pass a perturbation on with probability p = 1/2, and 

•Reversible functions with unit probability. 

Hence Kauffman networks with K = 2 are critical if frozen (0000, 1111) and 
reversible (1001, 0110) functions are selected with equal probability.

This is the case, for example, if the Boolean functions are drawn from a 
uniform random distribution.



Dynamical node classes
In terms of their dynamical behaviour, the nodes also fall into 
categories:

Frozen core - these nodes remain unchanged

Irrelevant nodes - these nodes have only frozen nodes as their 
outputs

Relevant nodes - all remaining nodes

The relevant nodes completely determine the number and size of 
attractors in the network.



Scaling laws

Much work has been done on the scaling of dynamical properties 
with network size, most notably the number of attractors and the 
number of relevant nodes. 

For many years it was believed that the number of attractors in an 
N-node Kauffman network scales as N1/2, but recently it the scaling 
was shown to be superpolynomial (Samuelsson & Troein, 2003). 

The number of relevant nodes has been shown to scale as N2/3. 

These scaling behaviours can only be detected in very large 
computer simulations, with N > 109.



The feed-forward loop
A fundamental building block of dynamical, regulatory networks 
is the feed-forward loop:

It has: 
- one node with out-degree 2 and in-degree 0
- one node with out-degree 1 and in-degree 1
- one node with out-degree 0 and in-degree 2



The feed-forward loop
We have already seen evidence that the topology of the feed-
forward loop occurs in transcription networks and neural 
networks. But what about the dynamical behaviour?



The feed-forward loop
In transcription networks each network edge can represent an 
activation or inhibition. In other words nodes can switch each other 
on and off. 

Activation and inhibition are represented as…

…respectively.

We will talk more about the biological details of this later.



The feed-forward loop

Hence we can draw eight different feed-forward loops:



The feed-forward loop

In order to study the different dynamics this results in, we need to 
model the way in which these nodes switch each other off and on. 

In the case of gene regulation, the following model is appropriate:

First, consider three genes, X, Y and Z, linked by activation or 
inhibition:

Each of these has a concentration, which is akin to an activation level.



The feed-forward loop
We have two external switches, Sx and Sy, which can be off (0) or 
on (1). 

The concentration of X, denoted by x, is fully controlled by Sx :

x = Sx



The feed-forward loop

The concentration of Y, denoted by y*, is controlled by Sy via 
y*= y Sy , but also by x. For the two cases of activation and 
repression we have:

dy / dt = by + by [(x / kxy)H/(1 + (x / kxy)H)] – ay y

dy / dt = by + by [1 / (1 + (x / kxy)H)] – ay y



The feed-forward loop

dy / dt = by + by [(x / kxy)H/(1 + (x / kxy)H)] – ay y

dy / dt = by + by [1 / (1 + (x / kxy)H)] – ay y

where by is the basal rate of Y production, ay is the decay rate, and 
the rest of the equation is based on the Hill equation, with H as the 
Hill coefficient and by and kxy as constants. 

For the dynamics we will consider, we set H = 2.

Note that the repressor case is the activator with –H. 



The feed-forward loop

The concentration of Z, denoted by z, is dependent on x and y. 
Here we consider an AND-type logic function (but others, such as 
OR are also possible).

Altogether we have four possible responses, corresponding to the 
four scenarios:



The feed-forward loop

dz / dt = bz + bz [(x / kxz)H/(1 + (x / kxz)H)] [(y* / kyz)H/(1 + (y* / kyz)H)] – az z

dz / dt = bz + bz [1/(1 + (x / kxz)H)] [(y* / kyz)H/(1 + (y* / kyz)H)] – az z

dz / dt = bz + bz [(x / kxz)H/(1 + (x / kxz)H)] [1/(1 + (y* / kyz)H)] – az z

dz / dt = bz + bz [1/(1 + (x / kxz)H)] [1/(1 + (y* / kyz)H)] – az z

where y* = y Sy .



The feed-forward loop

Before we look at dynamics in detail, let us distinguish two basic 
types of feed-forward loop among the eight possible:



The feed-forward loop
Coherent and incoherent:

A loop is coherent if the sign of the XZ interaction is the same as the 
combined sign of the XY and YZ interactions.



The feed-forward loop

All coherent loops act as a delay circuit, relative to a simple XY 
and XZ co-regulation.

(thin line) (thick lines)
The delay is sign-sensitive, as it only affects the on-switching.

Mangan, S., & Alon, U. PNAS, 100(21), 11980–11985. (2003).



The feed-forward loop

In only two of the four coherent loops does the steady-state of Z
depend on both Sx and Sy. Contrast one of these two with one of 
the other two:

Z = Sx AND Sy

Z = Sx



The feed-forward loop

Interestingly, one of these two coherent loops with dependency 
on Sx and Sy is much more prevalent in real transcription 
networks than all the other coherent loops. 



The feed-forward loop

All incoherent loops act as a accelerator circuit, relative to a simple 
XY and XZ co-regulation.

(thin line) (thick lines)
The acceleration is sign-sensitive, as it only affects the on-switching.

Mangan, S., & Alon, U. PNAS, 100(21), 11980–11985. (2003).



The feed-forward loop

Again only two of the four loops have a steady-state of Z that depends 
on both Sx and Sy. Contrast one of these two with one of the other two:

Z = Sx AND NOT Sy

Z = 0



The feed-forward loop

Here too we find that one of these two loops with dependency 
on Sx and Sy is much more prevalent in real transcription 
networks than all the other incoherent loops. 



Evolution and modularity
Biological and engineered networks are very often modular, as 
modular organization makes it easy to construct complex network 
to solve a given task.

Modular networks are however most often not optimal for a given 
task. 

When creating and changing a network through some 
evolutionary process, we would like modularity to emerge 
spontaneously, i.e. without top-down constraints.



Evolution and modularity

In order to study this question, Kashtan and Alon propose a 
particular model of evolving networks. 

But first of all we need a measure of the modularity for our 
evolving networks. Recall the Newman-Girvan modularity 
measure:

Q = Si [eii - ( Sj eij )2 ]

where eij is the fraction of edges running between sets i and j. In 
order to allow for different null models and for the purpose of 
normalization, Kashtan & Alon define a modified version:

Qm = (Qreal - Qrand) / (Qmax - Qrand)

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Qm = (Qreal - Qrand) / (Qmax - Qrand)

where 

Qreal is the actual modularity, 

Qrand is the modularity of a randomized version of the network 
(e.g. with the same degree distribution as the original), and 

Qmax is the maximum modularity achieved with a modularity-
maximizing fitness function, over a large number of runs. 

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity
The network Kashtan and Alon use is a network of logic gates, and 
more specifically, NAND gates.

The NAND gate performs the NOT AND operation, and therefore 
responds to two inputs X and Y with the following Z: 

Kashtan & Alon, PNAS 102, 13773 (2005).

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0



Evolution and modularity
We want this network to solve a task, 
performed on four inputs X, Y, Z, and W.

We can evolve the network by swapping 
connections and accepting or rejecting 
those swaps depending on the resulting 
fitness of the network. 

The fitness is the fraction of correct output 
states obtained for all possible 16 input 
states.

Note that the NAND gate is universal, so 
that any logical operation can be performed 
by a network of NAND gates.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Real biological networks, such as the transcription network of the 
bacterium E. coli and the neural network of C. elegans show a high 
modularity Qm of around 0.5.

However, when we evolve our NAND-network to find a network 
which implements the task 

G1 = (X XOR Y) AND (Z XOR W)

so that G1 = 0 unless XYZW is 0110, 0101, 1001, or 1010, we get a 
low modularity of about Qm = 0.12.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

There are many solutions, i.e. many 
networks that solve this task, all with 
low Qm. 

One resulting network which solves 
the task is shown on the right.

Note that our task itself was modular:

G1 = (X XOR Y) AND (Z XOR W)

But the network is not.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Now consider the following two evolutionary targets:

G1 = (X XOR Y) AND (Z XOR W)

G2 = (X XOR Y) OR (Z XOR W)

which means that G2 = 1 unless XYZW = 0000, 0011, 1100, or 1111.

Let us evolve the network towards both…

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Now consider the following two evolutionary targets:

G1 = (X XOR Y) AND (Z XOR W)

G2 = (X XOR Y) OR (Z XOR W)

which means that G2 = 1 unless XYZW = 0000, 0011, 1100, or 1111.

Let us evolve the network towards both…

…by randomly flipping between them!

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity
The result are two highly modular (Qm = 0.54) and very similar networks:

As a result, each time we flip the target, the network adapts within a 
few iterations.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity
Interestingly the target flipping also speeds up the overall discovery 
time of the solution:

We take about 10000 generations to find a solution for G1 by itself…

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

…but only around 2000 generations to find both G1 and G2 when 
flipping between them!

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Hence modularity appears to spontaneously evolve when a system is 
faced with a modular, changing environment. 

The challenges which a biological organism is likely to encounter are 
likely to be modular in the sense that they involve similar subtasks 
and occur repeatedly, with minor variations.

This makes the target-flipping model a feasible representation of an 
effective response to a changing environment, and a plausible 
explanation of the modularity observed in biological networks.

Kashtan & Alon, PNAS 102, 13773 (2005).



Social networks

From 1930s onwards, subject of 
Sociometry develops. 

This involves measuring and 
analyzing social networks, and 
can be viewed in some way as 
the birth of network science.

Here we will look at some 
classic data sets and examine 
the properties which social 
networks share. 

from: Zachary, J. Anthropol. Res. 33, 452 (1977) 



Social networks

Zachary Karate Club data set

Wayne W. Zachary published an article in 1977 describing a 
Karate Club whose members formed two factions. 

This was because they disagreed whether their instructor 
should receive a pay rise. 

After the instructor was fired, the club split as some joined him 
at a new club.  



Social networks

Properties of the Zachary Karate Club data set:

34 nodes = people
78 undirected connections = friendships*

*defined as consistent social interactions outside the club.

Note that while there were about 60 members in the club, only 
34 had friends within the club, leaving the other members as 
disconnected nodes in the graph (and therefore irrelevant).



Social networks
In the original paper, Zachary also 
produced a weighted version of the 
network, recording the strength of 
interactions between individuals. 

He then used the maximum-flow-
minimum-cut algorithm to 
(successfully) predict the two parts 
which the club would split into.

Newman and Girvan (2002) managed 
to predict the split for the unweighted 
version using their community 
detection algorithm. Image: Newman and Girvan, PRL 69, 026113 (2004)



Max-flow-min-cut

A cut is a set of edges which separates the 
nodes into two sets, one containing the source 
and one containing the sink. 

The smallest bottleneck corresponds to the 
minimum cut. 

In unweighted networks the size of a cut is the 
number of edges. 

In a weighted network the size of a cut is the 
sum of the edge weights.

The maximum-flow-minimum-cut or max-flow-min-cut theorem simply states 
that the flow in a network is limited by the smallest bottleneck.



Max-flow-min-cut
The maximum flow between source and sink across the whole 
network cannot exceed the capacity of the minimum cut. 

The minimum cut is what Zachary used to predict the split of 
the Karate Club.



Social networks
In some cases, social networks are also directed, e.g.:

– Study by Bruce Kapferer of interactions in an African tailor shop 
with 39 nodes, where friendship interactions (undirected) and 
work-related interactions (directed) were studied. 

– Study by McRae of 67 prison inmates, in which each inmate was 
asked to name other prisoners he was friends with. This matrix too 
is directed. 

Generally speaking even directed social networks usually turn out to 
be fairly symmetric, which is not too surprising.

If people are free to choose whom they interact with they most likely 
will not bother with someone who does not reciprocate the 
interaction. 



Bipartite graphs
Bipartite graphs have two types of 
nodes and there are no edges 
between the same type of node.

Bipartite real-world networks 
include collaboration networks 
between scientists (papers), actors 
(films), and company directors 
(boards).

Often these networks are converted 
using a one-mode projection with 
fully connected subgraphs.

Image: Newman et al., PRE 64, 026118 (2001)



Collaboration networks
A particular class of social networks are collaboration networks.

These are bipartite graphs because we have: 

a) People, who belong to

b) Collaborations, such as films, 
scientific papers or company 
boards.



Collaboration networks
In order to analyze them we transform them into a simple network 
between people by connecting all members of a collaboration to each 
other.

This is why collaboration graphs have a high clustering coefficient.

Image: Newman et al., PRE 64, 026118 (2001)



Collaboration networks
Collaboration networks however also show short average path 
lengths. 

This, together with their high clustering coefficient makes them 
small-world networks.

They are not scale-free however, and seem to closely match models 
with a scale-free distribution with an expontial cutoff:

The finite cutoff may reflect the finite size of the time window from 
which the data is collected.



Collaboration networks
Finally, recall that 
collaboration networks are 
assortative, meaning that 
highly connected nodes are 
connected to other highly 
connected nodes.

This is quite unusual - many 
real-world networks are 
disassortative, as high-degree 
nodes connect to low-degree 
ones.

Image: Newman, PRL 89, 208701 (2002)



Social networks: Summary
Social networks tend to be undirected even if the direction is actually 
recorded.

Collaboration networks form an important subset of social networks. 

They are originally bipartite, and their one-mode projection is:

– small-world
– assortative
– not scale-free

Collaboration networks are studied much more than other social 
networks because it is easy to gather large data sets of this kind.



Biological networks
There are many different types of networks in biology:

– Transcription networks
– Protein-protein interaction networks
– Metabolic networks
– Neural networks
– Food webs

… among others.



Transcription networks
The DNA of every living 
organism is organized into 
genes which are transcribed
and then translated into 
proteins. 

Transcription is performed 
by the RNAp molecule 
which binds to the promoter
region and produces a copy 
of the gene, called mRNA. 

The ribosome then translates 
the mRNA into a protein.



Transcription networks

Whether or not a gene is 
transcribed at a given point in 
time depends on proteins called 
transcription factors, which bind 
to the promoter region.

Activators enhance transcription 
while repressors inhibit it.



Transcription networks
Since transcription factors themselves are also proteins encoded by genes we 
can get a transcription factor which activates another transcription factor, etc. 

Hence we can construct a network where the nodes are genes and a directed
edge 

X → Y

means that the product of gene X is a transcription factor which binds to the 
promoter region of gene Y, or shorter, that

gene X controls the transcription of gene Y.

This is the kind of network we studied in the context of the feed-forward loop.



Transcription networks
The in-degree and out-degree distributions of transcription 
networks are very different. 

Some transcription factors regulate large numbers of genes, and 
are called global regulators. This means we can get high out-degrees. 

In fact, the out-degrees follow a scale-free distribution P(k) ~ k -g .

On the other hand, no gene is regulated by many other genes. 
Therefore there we only get low in-degrees.



Transcription networks
And as we know, feed-forward loops are particularly prevalent in 
transcription networks.

Image: Milo et al., Science 330, 1538 (2004)



Accelerating networks

Many organizational and regulatory networks require global 
integration. What this means is that, as the network grows, we have to 
make sure that it remains highly connected. 

Examples include gene regulatory networks, supercomputer wirings, 
and stock exchanges. 

If the connectivity of a network, measured as the fraction of possible 
edges that are realized, is to remain constant, then this means that the 
number of connections between N nodes has to grow proportional to 
the number of possible edges, which is N(N-1)/2.

In other words, the number of edges has to grow quadratically with the 
number of nodes. Such networks are called accelerating networks.



Accelerating networks
This quadratic growth is indeed observed in: 

a) supercomputers
b) gene regulatory networks (number of regulatory genes as a 
function of the total number of genes) in single-cell organisms

co
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nodes (normalized) Mattick & Gagen, Science 307, 856 (2005)



Accelerating networks
What this means however, is that such networks are likely to hit a 
growth ceiling. 

This is because in any physical network the nodes have a finite 
capacity to connect to other nodes. In other words the network has a 
maximum degree kmax.

Hence, if the number of edges is given by E = aN2, the average 
degree is given by 

kav = 2E/N = 2aN

and since kav ≤ kmax the network cannot grow larger than 

Nmax = kmax / 2a



Accelerating networks
Mattick and Gagen suggest that this growth ceiling is overcome by 
technological or biological innovation.

Most biological organisms fall into two basic categories, prokaryotes 
and eukaryotes. 

Prokaryotes are single-cell organisms such as bacteria. 
Eukaryotes are (more or less) everything else, including us.

Prokaryotes show a quadratic growth of the number of regulatory 
genes. Mattick and Gagen claim that eukaryotes developed when 
prokaryotes hit the growth ceiling, forcing the development of new 
regulatory mechanisms, such as the use of non-coding DNA.

Mattick & Gagen, Science 307, 856 (2005)



The fundamental cycle of cell division that occurs in all living matter is 
termed the cell-cycle.

Boolean cell-cycle network

Images: Wikipedia
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Underlying the cell-cycle is a regulatory network of genes, switching 
each other on and off. We can measure which genes are switched on at 
which times, using microarrays.

Boolean cell-cycle network



These measurements tell us that a number of genes are activated at 
each stage of the cell-cycle, and that these genes are activated in 
succession.

Boolean cell-cycle network

rows = genes

Orlando, D. A. et al. Nature, 453(7197), 944–947 (2008).



The protein cyclin-CDK has long been 
thought to play a crucial role in 
regulating the cell cycle oscillations.

However, if we knock out cyclin-CDK, 
we find that 70% of genes oscillating 
with the cell-cycle still oscillate.

To model this cyclin-independent 
oscillation, we can isolate the 
transcription factors among these 
genes that oscillate independently of 
cyclin, and draw a directed network of 
regulation.

Boolean cell-cycle network

Orlando, D. A. et al. Nature, 453(7197), 944–947 (2008).



These nine genes switch on 
successively, in five distinct 
groups (different colours). 

By casting this network as a 
Boolean network with (mostly) 
AND functions, one finds a 
robust attractor cycle of size 
five which dominates the state 
space with an attraction basin 
covering 80% of the 512 states.

Boolean cell-cycle network

Orlando, D. A. et al. Nature, 453(7197), 944–947 (2008).



Protein-protein networks
In protein-protein networks we are interested in the direct interactions 
between proteins. 

Unlike transcription networks, protein-protein networks are undirected. 

They have a scale-free degree distribution, and therefore a small number 
of highly connected nodes, or hubs. 

These hubs have been shown experimentally to correspond to 
biologically essential proteins. Removing these is lethal for an organism.

This is often referred to as the equivalence of lethality and centrality in 
proteins, where centrality here is simply the degree. 



Protein-protein networks
We can distinguish two types of 
hubs in protein-protein 
interaction networks:

Party hubs, which interact with 
several other proteins 
simultaneously.

Date hubs, which interact with 
several other proteins 
sequentially.

Image: Han et al., Nature 430, 88 (2004)



Protein-protein networks
We can distinguish party hubs and date hubs by looking at a set of confirmed 
protein-protein interactions and observing which pairs of genes are expressed 
together.

The similarity of gene expression is measured using the Pearson correlation 
coefficient.  

We observe a bimodal distribution for proteins of degree k > 5 which indicated a 
separation of date hubs (low similarity) and party hubs (high similarity).

Image: Han et al., Nature 430, 88 (2004)



Metabolic networks
Metabolic networks are networks of molecular interactions within 
the biological cell, which makes them very general.

By comparing these networks for 43 organisms, Barabasi et al.
established that they have 

– a scale-free degree-distribution, but also

– a high clustering coefficient scaling as C(k) ~ k-1,
which suggests modularity.

In order to explain the discrepancy they came up with the model 
of hierarchical networks, which we discussed in lecture 2.



Neural networks
The complete neural network of the worm C. elegans has been 
mapped, giving valuable insights into the topology of real 
neural networks.

It is a directed network of 280 nodes and 2170 edges.

Image: Wikipedia



Neural networks

The network falls into the superfamily of transcription and 
signal transduction networks with a high frequency of feed-
forward loops.

This makes sense as neural networks, like transcription 
networks, are also complex control circuits. 

The neural network of C. elegans is also small-world as it has a 
high clustering coefficient and a short average path length.



Rich clubs

nodes were connected to each other efficiently by white matter
tracts traversing greater anatomical distances, on average, than
the tracts connecting more peripheral nodes (van den Heuvel and
Sporns, 2011). Therefore, the human brain rich club putatively
confers high value for high physical connection cost.

We aimed to test the hypothesis that rich club organization of
the cellular connectome of C. elegans conforms to similar eco-
nomical constraints—a trade-off between adaptive value and
physical cost—as the rich club of human brain anatomical net-
works. The motivating idea was that general principles of brain
network organization may emerge invariantly across scales of
anatomical space and across different animal species.

Materials and Methods
C. elegans nervous system. The dataset used to describe the hermaphrodite
C. elegans neuronal network (Varshney et al., 2011) details N ! 279
neurons (the 282 nonpharyngeal neurons excluding VC6 and CANL/R,
which are missing connectivity data) and M ! 2287 synaptic connec-
tions, with the relative physical locations of the neurons described by 2D
coordinates. An undirected binary form of the network was used to char-
acterize rich club topology. For motif analysis, we used a directed binary
graph, as detailed below. In addition, neuronal birth times (Varier and
Kaiser, 2011) were compared with key points in the life cycle of C. elegans
allowed to develop normally at 22°C (Hall and Altun, 2008).

Rich club coefficient. To quantify the rich club effect, the degree of each
node in the network (i.e., the number of other nodes it is connected to)
must first be calculated and all nodes with degree ! k removed. The rich
club coefficient for the remaining subgraph, "(k), is then the ratio of the
number of existing connections to the number that would be expected if
the subgraph was fully connected and formally is given by the following
equation (Zhou and Mondragon, 2004; Colizza et al., 2006):

"#k$ "
2M%k

N%k#N%k # 1$

where N%k is the number of nodes with degree % k and M%k is the
number of edges between them. The computation of "(k) for all values of
k in the network of interest yields a rich club curve (Fig. 1a).

However, the higher-degree nodes in a network have a higher proba-
bility of sharing connections with each other simply by chance, so even
random networks generate increasing rich club coefficients as a function
of increasing degree threshold, k. To control for this effect, the rich club
curve for C. elegans was normalized relative to the rich club curves of
1000 comparable random networks. The random networks were gener-
ated by performing multiple (100 & M ) double edge swaps or permuta-
tions on the original graph representing the C. elegans neuronal network.
A double edge swap removes two randomly selected edges a-b and c-d
and replaces them with the edges a-c and b-d (assuming they do not
already exist, in which case a new edge pair must be selected). This per-
mutation procedure ensures that the number of nodes and edges, and the
degree distribution, of the nematode network are all conserved in the
random networks. The normalized rich club coefficient is then given by
the following equation:

"norm#k$ "
"#k$

"random#k$

where "random(k) is the average value of "(k) across the random net-
works.

The existence of rich club organization is defined by "norm(k) % 1 over
some range of values of threshold degree k. We used a probabilistic
approach to define the threshold criteria for a rich club more precisely. At
every different threshold degree, we estimated "random(k) for 1000 real-
izations of the random networks and estimated the SD of "random(k),
denoted $. The threshold range of the rich club regime was then specified
by those values of k for which "(k) % "random(k) ' 1$. Therefore, a rich
club could be said to exist in the subgroup of network nodes defined by
an arbitrary degree threshold if "norm(k) ! 1 ' 1$; but we also defined

rich clubs by the more stringent criterion that "norm(k) % 1 ' 2$ and by
the even more conservative criterion that "norm(k) % 1 ' 3$.

Connection distance and path length. To describe the nematode net-
work fully, both physical and topological metrics are required. The only
physical metric we used was the connection distance, which is the Euclid-
ean distance between somata of synaptically connected neurons in the
adult animal. Connection distance, a physical metric (in units of milli-
meters), provides a reasonable approximation to the axonal connection
distance, or wiring cost, which is an anatomical property of the system.
We also used a number of topological metrics to quantify the connec-
tome (see the following subsections Efficiencies, Betweenness Centrality,
Modularity and Related Topological Roles, and Motifs). It is important
to note that we will use path length strictly to refer to a topological dis-
tance in the network and connection distance to describe a physical dis-
tance in the organism. Shorter path lengths between neurons indicate
fewer synaptic connections mediating between them; if the minimum
path length between two neurons is 1, they are directly, synaptically
connected or nearest neighbors; if the path length is 2, they are indi-
rectly connected by a chain of two synaptic connections, and so on.

Efficiencies. A measure of the global efficiency of a network, EGlobal, is
given by the mean of the sum of the inverse shortest path lengths, Lij,
between all existing node pairs i and j (Achard and Bullmore, 2007):

EGlobal "
1

N#N # 1$ !
i(j&G

1

Lij

Figure 1. Rich club of the C. elegans nervous system. a, The blue curve illustrates the rich club
coefficient "(k) for the C. elegans neuronal network and the red curve is a randomized rich club
curve, "random(k), generated by averaging the rich club coefficients of 1000 random graphs at
each value of k. The green curve is the normalized coefficient. Error bars on the "random(k) and
"norm(k) curves are 1$ of the random graphs. "(k) %"random(k) ' 1$ over the range 35 !
k ! 73, indicating that this is the rich club regime (highlighted in lightest gray). The more
conservatively defined rich clubs of "(k) %"random(k) ' 2$ and "(k) %"random(k) ' 3$
are shaded darker grey (Table 1). b, A purely topological view of the rich club network. Nodes in
yellow are located in the tail and those in red are located in the head. c, The rich club is shown in
the context of the whole body of the animal. It only has components in the head and tail, which
are enlarged to show the subset DVA and PVCL/R (tail, right) and the subset AVAL/R, AVBL/R,
AVDL/R, and AVEL/R (head, left). Only synaptic connections between rich club neurons are
shown.
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nodes were connected to each other efficiently by white matter
tracts traversing greater anatomical distances, on average, than
the tracts connecting more peripheral nodes (van den Heuvel and
Sporns, 2011). Therefore, the human brain rich club putatively
confers high value for high physical connection cost.

We aimed to test the hypothesis that rich club organization of
the cellular connectome of C. elegans conforms to similar eco-
nomical constraints—a trade-off between adaptive value and
physical cost—as the rich club of human brain anatomical net-
works. The motivating idea was that general principles of brain
network organization may emerge invariantly across scales of
anatomical space and across different animal species.

Materials and Methods
C. elegans nervous system. The dataset used to describe the hermaphrodite
C. elegans neuronal network (Varshney et al., 2011) details N ! 279
neurons (the 282 nonpharyngeal neurons excluding VC6 and CANL/R,
which are missing connectivity data) and M ! 2287 synaptic connec-
tions, with the relative physical locations of the neurons described by 2D
coordinates. An undirected binary form of the network was used to char-
acterize rich club topology. For motif analysis, we used a directed binary
graph, as detailed below. In addition, neuronal birth times (Varier and
Kaiser, 2011) were compared with key points in the life cycle of C. elegans
allowed to develop normally at 22°C (Hall and Altun, 2008).

Rich club coefficient. To quantify the rich club effect, the degree of each
node in the network (i.e., the number of other nodes it is connected to)
must first be calculated and all nodes with degree ! k removed. The rich
club coefficient for the remaining subgraph, "(k), is then the ratio of the
number of existing connections to the number that would be expected if
the subgraph was fully connected and formally is given by the following
equation (Zhou and Mondragon, 2004; Colizza et al., 2006):
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where N%k is the number of nodes with degree % k and M%k is the
number of edges between them. The computation of "(k) for all values of
k in the network of interest yields a rich club curve (Fig. 1a).

However, the higher-degree nodes in a network have a higher proba-
bility of sharing connections with each other simply by chance, so even
random networks generate increasing rich club coefficients as a function
of increasing degree threshold, k. To control for this effect, the rich club
curve for C. elegans was normalized relative to the rich club curves of
1000 comparable random networks. The random networks were gener-
ated by performing multiple (100 & M ) double edge swaps or permuta-
tions on the original graph representing the C. elegans neuronal network.
A double edge swap removes two randomly selected edges a-b and c-d
and replaces them with the edges a-c and b-d (assuming they do not
already exist, in which case a new edge pair must be selected). This per-
mutation procedure ensures that the number of nodes and edges, and the
degree distribution, of the nematode network are all conserved in the
random networks. The normalized rich club coefficient is then given by
the following equation:

"norm#k$ "
"#k$

"random#k$

where "random(k) is the average value of "(k) across the random net-
works.

The existence of rich club organization is defined by "norm(k) % 1 over
some range of values of threshold degree k. We used a probabilistic
approach to define the threshold criteria for a rich club more precisely. At
every different threshold degree, we estimated "random(k) for 1000 real-
izations of the random networks and estimated the SD of "random(k),
denoted $. The threshold range of the rich club regime was then specified
by those values of k for which "(k) % "random(k) ' 1$. Therefore, a rich
club could be said to exist in the subgroup of network nodes defined by
an arbitrary degree threshold if "norm(k) ! 1 ' 1$; but we also defined

rich clubs by the more stringent criterion that "norm(k) % 1 ' 2$ and by
the even more conservative criterion that "norm(k) % 1 ' 3$.

Connection distance and path length. To describe the nematode net-
work fully, both physical and topological metrics are required. The only
physical metric we used was the connection distance, which is the Euclid-
ean distance between somata of synaptically connected neurons in the
adult animal. Connection distance, a physical metric (in units of milli-
meters), provides a reasonable approximation to the axonal connection
distance, or wiring cost, which is an anatomical property of the system.
We also used a number of topological metrics to quantify the connec-
tome (see the following subsections Efficiencies, Betweenness Centrality,
Modularity and Related Topological Roles, and Motifs). It is important
to note that we will use path length strictly to refer to a topological dis-
tance in the network and connection distance to describe a physical dis-
tance in the organism. Shorter path lengths between neurons indicate
fewer synaptic connections mediating between them; if the minimum
path length between two neurons is 1, they are directly, synaptically
connected or nearest neighbors; if the path length is 2, they are indi-
rectly connected by a chain of two synaptic connections, and so on.

Efficiencies. A measure of the global efficiency of a network, EGlobal, is
given by the mean of the sum of the inverse shortest path lengths, Lij,
between all existing node pairs i and j (Achard and Bullmore, 2007):
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Figure 1. Rich club of the C. elegans nervous system. a, The blue curve illustrates the rich club
coefficient "(k) for the C. elegans neuronal network and the red curve is a randomized rich club
curve, "random(k), generated by averaging the rich club coefficients of 1000 random graphs at
each value of k. The green curve is the normalized coefficient. Error bars on the "random(k) and
"norm(k) curves are 1$ of the random graphs. "(k) %"random(k) ' 1$ over the range 35 !
k ! 73, indicating that this is the rich club regime (highlighted in lightest gray). The more
conservatively defined rich clubs of "(k) %"random(k) ' 2$ and "(k) %"random(k) ' 3$
are shaded darker grey (Table 1). b, A purely topological view of the rich club network. Nodes in
yellow are located in the tail and those in red are located in the head. c, The rich club is shown in
the context of the whole body of the animal. It only has components in the head and tail, which
are enlarged to show the subset DVA and PVCL/R (tail, right) and the subset AVAL/R, AVBL/R,
AVDL/R, and AVEL/R (head, left). Only synaptic connections between rich club neurons are
shown.
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The neural network of the worm C. elegans also has a rich club. We 
can think of this as a control center of the neural network.  

Towlson et al., J. Neurosci. 33, 6380 (2013).



Rich clubs
Interestingly the rich club is split between the head and the tail of 
the worm. At first sight this is odd as it requires many long-range 
connections, which are ‘expensive’ to build and maintain.

Towlson et al., J. Neurosci. 33, 6380 (2013).

nodes were connected to each other efficiently by white matter
tracts traversing greater anatomical distances, on average, than
the tracts connecting more peripheral nodes (van den Heuvel and
Sporns, 2011). Therefore, the human brain rich club putatively
confers high value for high physical connection cost.

We aimed to test the hypothesis that rich club organization of
the cellular connectome of C. elegans conforms to similar eco-
nomical constraints—a trade-off between adaptive value and
physical cost—as the rich club of human brain anatomical net-
works. The motivating idea was that general principles of brain
network organization may emerge invariantly across scales of
anatomical space and across different animal species.

Materials and Methods
C. elegans nervous system. The dataset used to describe the hermaphrodite
C. elegans neuronal network (Varshney et al., 2011) details N ! 279
neurons (the 282 nonpharyngeal neurons excluding VC6 and CANL/R,
which are missing connectivity data) and M ! 2287 synaptic connec-
tions, with the relative physical locations of the neurons described by 2D
coordinates. An undirected binary form of the network was used to char-
acterize rich club topology. For motif analysis, we used a directed binary
graph, as detailed below. In addition, neuronal birth times (Varier and
Kaiser, 2011) were compared with key points in the life cycle of C. elegans
allowed to develop normally at 22°C (Hall and Altun, 2008).

Rich club coefficient. To quantify the rich club effect, the degree of each
node in the network (i.e., the number of other nodes it is connected to)
must first be calculated and all nodes with degree ! k removed. The rich
club coefficient for the remaining subgraph, "(k), is then the ratio of the
number of existing connections to the number that would be expected if
the subgraph was fully connected and formally is given by the following
equation (Zhou and Mondragon, 2004; Colizza et al., 2006):
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N%k#N%k # 1$

where N%k is the number of nodes with degree % k and M%k is the
number of edges between them. The computation of "(k) for all values of
k in the network of interest yields a rich club curve (Fig. 1a).

However, the higher-degree nodes in a network have a higher proba-
bility of sharing connections with each other simply by chance, so even
random networks generate increasing rich club coefficients as a function
of increasing degree threshold, k. To control for this effect, the rich club
curve for C. elegans was normalized relative to the rich club curves of
1000 comparable random networks. The random networks were gener-
ated by performing multiple (100 & M ) double edge swaps or permuta-
tions on the original graph representing the C. elegans neuronal network.
A double edge swap removes two randomly selected edges a-b and c-d
and replaces them with the edges a-c and b-d (assuming they do not
already exist, in which case a new edge pair must be selected). This per-
mutation procedure ensures that the number of nodes and edges, and the
degree distribution, of the nematode network are all conserved in the
random networks. The normalized rich club coefficient is then given by
the following equation:

"norm#k$ "
"#k$

"random#k$

where "random(k) is the average value of "(k) across the random net-
works.

The existence of rich club organization is defined by "norm(k) % 1 over
some range of values of threshold degree k. We used a probabilistic
approach to define the threshold criteria for a rich club more precisely. At
every different threshold degree, we estimated "random(k) for 1000 real-
izations of the random networks and estimated the SD of "random(k),
denoted $. The threshold range of the rich club regime was then specified
by those values of k for which "(k) % "random(k) ' 1$. Therefore, a rich
club could be said to exist in the subgroup of network nodes defined by
an arbitrary degree threshold if "norm(k) ! 1 ' 1$; but we also defined

rich clubs by the more stringent criterion that "norm(k) % 1 ' 2$ and by
the even more conservative criterion that "norm(k) % 1 ' 3$.

Connection distance and path length. To describe the nematode net-
work fully, both physical and topological metrics are required. The only
physical metric we used was the connection distance, which is the Euclid-
ean distance between somata of synaptically connected neurons in the
adult animal. Connection distance, a physical metric (in units of milli-
meters), provides a reasonable approximation to the axonal connection
distance, or wiring cost, which is an anatomical property of the system.
We also used a number of topological metrics to quantify the connec-
tome (see the following subsections Efficiencies, Betweenness Centrality,
Modularity and Related Topological Roles, and Motifs). It is important
to note that we will use path length strictly to refer to a topological dis-
tance in the network and connection distance to describe a physical dis-
tance in the organism. Shorter path lengths between neurons indicate
fewer synaptic connections mediating between them; if the minimum
path length between two neurons is 1, they are directly, synaptically
connected or nearest neighbors; if the path length is 2, they are indi-
rectly connected by a chain of two synaptic connections, and so on.

Efficiencies. A measure of the global efficiency of a network, EGlobal, is
given by the mean of the sum of the inverse shortest path lengths, Lij,
between all existing node pairs i and j (Achard and Bullmore, 2007):
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k ! 73, indicating that this is the rich club regime (highlighted in lightest gray). The more
conservatively defined rich clubs of "(k) %"random(k) ' 2$ and "(k) %"random(k) ' 3$
are shaded darker grey (Table 1). b, A purely topological view of the rich club network. Nodes in
yellow are located in the tail and those in red are located in the head. c, The rich club is shown in
the context of the whole body of the animal. It only has components in the head and tail, which
are enlarged to show the subset DVA and PVCL/R (tail, right) and the subset AVAL/R, AVBL/R,
AVDL/R, and AVEL/R (head, left). Only synaptic connections between rich club neurons are
shown.
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Rich clubs
But it turns out that the rich club is fully formed before the worm 
hatches and grows. Furthermore the worm starts moving once the 
rich club is complete, but long before all of the motor neurons are 
created.

Towlson et al., J. Neurosci. 33, 6380 (2013).

visible signs of motor activity (twitching). To assess the probabil-
ity of this observation under the null hypothesis that the birth
times of the rich club neurons are drawn randomly from the
distribution of all neuronal birth times, we repeatedly and ran-
domly sampled 11 neurons from the network and counted the
number of times that all 11 randomly sampled neurons were born
before the onset of twitching. We found that the probability of
this occurrence by chance was only 0.02, suggesting that the ob-
served concentration of early birth times in the rich club is not
likely under the null hypothesis. Moreover, the additional neu-
rons included in the less stringently defined rich clubs (1! and

2!) also had early birth times (299 min
after fertilization; Table 1). It is also nota-
ble that most rich club neurons are born
before the embryo becomes elongated, in
the period 400 – 640 min after fertilization
when the animal’s body becomes approx-
imately three times thinner and approxi-
mately four times longer. It seems that
rich club connectivity could be estab-
lished between neurons when they are ini-
tially close to each other and that some of
these connections could then be extended
by elongation of the animal’s body.

Discussion
Rich club: high value for high cost
Although this topological analysis of the
cellular connectome of C. elegans was un-
informed by any prior data, other than the
synaptic connectivity of each of the 279
neurons in the system, there was a re-
markable degree of functional relatedness
among the rich club neurons we identi-
fied. As detailed in Table 1, 10 of the neu-
rons in the most conservatively defined
(3!) or “richest” club were the so-called
command interneurons of the locomotor
circuit with a functional role in forward or
backward locomotion (Hall and Altun,
2008). The remaining neuron in this club,

DVA, has been classified as a proprioceptive interneuron that
modulates the locomotor circuit (Li et al., 2006). When the rich
club was defined more liberally, up to three additional neurons
were added (AIBR, RIBL, and RIAR), all of which are interneu-
rons in the head of the animal (Table 1).

The behavioral roles of each of the rich club neurons make it
likely that the club as a whole is important functionally for coor-
dinated and adaptive movement of the organism. Ten of the 11
neurons of the richest club of the nematode are neurons that have
already been classified functionally as command interneurons.
Six of these (AVAL/R, AVEL/R, and AVDL/R) are active during
and required for backward movement (Chalfie, 1985; Chronis et
al., 2007; Ben Arous et al., 2010; Piggott et al., 2011), whereas four
of them (AVBL/R and PVCL/R) are active during and required
for forward movement. Although there is evidence for some
functional heterogeneity within these groups (Kawano et al.,
2011), in general, the command neurons are thought to play a
specialized role in potentiating or triggering the motor programs
for forward or reverse locomotion (Tsalik and Hobert, 2003;
Gray et al., 2005). The integrative topology of the rich club sug-
gests that these neurons may not be limited to this instructive
role, but might also facilitate communication or exchange of in-
formation with other parts of the nervous system. The highly
efficient connectivity between rich club neurons will mediate in-
formation transfer with short synaptic delays and low noise. The
functional importance of this integrative capacity is highlighted
by the fact that the organism does not visibly move until all of the
rich club neurons have been born. Given that coordinated move-
ment is a fundamental component of many adaptive behaviors of
the organism (e.g., feeding, egg laying, and escaping) the rich club
is likely to have high value.

The cost of the rich club is quantified by the Euclidean dis-
tance between synaptically connected neurons. This is a simple

Figure 4. Topological and spatial properties of the C. elegans nervous system are related: rich club neurons (red triangles) are
distinguished from poor periphery neurons (blue circles) on all topological metrics. Rich club neurons tend to have higher degree
(by definition), higher efficiency, higher betweenness, and higher participation coefficients than peripheral neurons. The connec-
tion distance of each neuron is the average of the physical distances between it and all of the other neurons to which it is
synaptically connected in the network. Most rich club neurons have greater connection distance than most peripheral neurons, but
some of the neurons with greatest connection distance are in the periphery.

Figure 5. Neuronal birth times and key events in the development of C. elegans. Top (red
bars), Number of rich club neurons born in each 5 min interval after fertilization. Bottom (dark
blue bars), Birth times of the rest of the neurons in the C. elegans nervous system. The dashed
vertical lines indicate when the animal begins to twitch, when it is first capable of coordinated
movement, and when it hatches.
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Food webs
Food webs are ecological networks in which the nodes are species 
and directed edges signify which species eats which other species. 

Typically these networks have tens or hundreds of nodes and 
hundreds or thousands of connections.

(Picture: UK Grassland Food Web, www.foodwebs.org)



Food webs
In food webs we have: 

– top level species which are 
purely predators and thus have in-
degree zero,

– intermediate species which are 
both predator and prey, and which 
have non-zero in- and out-degree, 
and

– basal species which are only prey, 
and which therefore have out-
degree zero.



Food webs
Food webs are characterized by set of properties, such as:

– the fraction of top, intermediate and basal species

– the standard deviation of generality and vulnerability, 
which are out-degree and in-degree, divided by average 
degree.

– the number, mean length and standard deviation of the 
length of food chains

– the fraction of species that are cannibals or omnivores.

All of these properties of networks can be reproduced using 
a simple model known as the niche model.



Food webs
The niche model maps the hierarchy of species to the unit 
interval and allows a model food web with N species and E
edges to be constructed by drawing, for each species: 

– a random number ni uniformly between 0 and 1. 

– a random number ri between 0 and 1 from a beta 
distribution with mean E/N2 (= overall connectivity).

– a random number ci between ri/2 and ni. 

The species i at ni eats species in the range ri, centred around ci. 

Williams, R. J., & Martinez, N. D. Nature, 404(6774), 180–183 (2000).



Biological networks: Summary
Transcription networks: 
directed, low in-degree, scale-free out-degree, feed-forward loops

Protein-protein networks: 
undirected, scale-free, ‘party hubs’ and ‘date hubs’

Metabolic networks:
undirected, scale-free, high clustering coefficient, modular, ‘hierarchical’

Neural networks: 
directed, small-world, feed-forward loops

Food webs:
directed, three-tier structure, predicted well by niche model



Human Disease Network
The bipartite network of diseases and disease-related genes is also 
known as the diseasome.

Goh et al. PNAS 104, 8685 (2007).



Human Disease Network
The one-mode projection of the diseasome onto diseases gives us a 
weighted network of diseases, in which the weights indicate the 
number of shared disease genes.  

This is the Human Disease Network (HDN).
Goh et al. PNAS 104, 8685 (2007).



Human Disease Network
We can equally perform a one-mode projection onto disease 
genes, and create a Disease Gene Network (DGN).

Goh et al. PNAS 104, 8685 (2007).



Human Disease Network
The Human Disease Network forms a giant component with 516 
out of 1284 disorders. 

Goh et al. PNAS 104, 8685 (2007).



Human Disease Network
There are eight times as many connections between disorders of 
the same class than we would expect by chance.

Goh et al. PNAS 104, 8685 (2007).



Human Disease Network
Looking at the Disease Gene Network, we find that ten times as 
many interactions as would be expected by chance are shared 
between this network and a network of protein-protein interactions.

Goh et al. PNAS 104, 8685 (2007).



Human Disease Network
Recall that in protein-protein networks the biological essentiality of 
proteins is correlated with their degree in the network - we discussed this 
under ‘Vulnerability’.

However, most disease genes are non-essential, and have a low degree, 
making them peripheral in the network.

A likely reason for this is that an essential disease gene with a central 
position in the protein-protein interaction network would be too 
disruptive, and prevent the carrier of the disease from surviving long 
enough to pass on the gene.

This hypothesis is confirmed by an exception to this rule: Disease genes 
activated by mutations during the life of the organism, such as some 
cancer-related genes, are more likely to be high-degree. 

Goh et al. PNAS 104, 8685 (2007).



Functional Brain Networks
We have already encountered structural neural networks in C. elegans. 
In recent years neurologists have started to investigate functional neural 
networks, and in particular, functional brain networks.

These are often constructed using functional magnetic resonance imaging 
(fMRI), which is capable of providing a 3D snapshot of brain activity 
every one or two seconds by measuring blood flow in the brain. The 
spatial resolution is limited to voxels of a few cubic millimeters. 

Science Museum / Oxford Centre for Functional Magnetic Resonance Imaging of the Brain



Functional Brain Networks
By measuring the activity across the brain over time (typically on the 
order of 10-20 minutes) and by measuring the temporal correlation of 
the brain activity between voxels, one can construct a weighted network 
between brain regions (which can then be thresholded).

Eguiluz et al. PRL 94, 018102 (2005).



Functional Brain Networks
This network turns out to be scale-free – a feature not observed in small 
structural neural networks such as the C. elegans network.

Eguiluz et al. PRL 94, 018102 (2005).
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Functional Brain Networks

Eguiluz et al. PRL 94, 018102 (2005).
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This network also turns out to be assortative, so highly connected nodes 
are connected to other highly connected nodes – like social networks.



Lastly, this network is also a small-world network, just like structural 
neural networks such as the C. elegans neural network.

Functional Brain Networks

Eguiluz et al. PRL 94, 018102 (2005).



Brain network rich clubs
Like the neural network of the primitive worm C. elegans, the fMRI
network of the human brain has also been found to contain a rich 
club. This might point to a centralized organisation of brain activity.

van den Heuvel et al., J. Neurosci. 31, 15775 (2011).

the threshold 0.5 marking the top 15% of the
node-specific Pindex values across
the 82 nodes of the network (Sporns et al.,
2007).

Rich-club centrality
To examine the role of the rich club in the global
network structure the centrality of the rich club
was measured. To this end, the percentage of
shortest paths between any two non-rich-club
nodes that passed through the rich club was com-
puted (Mw-nos). Two heuristics were examined:
(1) the percentage of the number of shortest paths
that passed through at least one of the rich-club
nodes, normalized to the number of all shortest
pathsinthenetwork,and(2)thenumberofshortest
paths between all nodes in the network that passed
through at least one rich-club edge.

Rich club in targeted and random attack
Network rich clubs have been noted to play a
central role in overall network structure (Xu
et al., 2010) having a strong positive impact
on the global efficiency of the network. The
role of a node (or a set of nodes) in the level
of global efficiency of a network can be eval-
uated by examining the damage inflicted by
attack on that node, simulated as a decrease
in the weights of its connections. We further
examined the role of the rich club in global
brain network structure by probing for the
effects of network damage on global effi-
ciency due to “attack” (illustrated in Fig. 7a).
Two forms of attack can be distinguished: “targeted
attack” and “random attack”. (1) Targeted attack
refers to examining the effects of damage to a spe-
cific set of nodes/edges in the network. (2) In con-
trast, random attack refers to examining the effects
of damage resulting from attacking a set of random
nodes/edges in the network. In this study, we com-
pared the effect on global efficiency of the network
following targeted attack on rich-club connections
versus random attack.

Targeted attack to rich-club connections. In
this condition, the weights (NOS-weighted) of the connections of the
rich club were attacked at two levels, inflicting 50 and 100% damage to all
weights of connections that interconnected the rich-club nodes, by set-
ting the weight of each of the rich-club connections to the following:

wij
! " wij # !1 $ ! !

100"" , (5)

with !, the level of inflicted damage, thus obtaining a damaged network
M !. The total damage to the network was computed as follows:

!total " #i, j%G wij $ wij
! . (6)

To assess the potential impact on global information flow we computed,
for each M !, the level of global efficiency (Rubinov and Sporns, 2010)
normalized to the level of global efficiency of M.

Random attack. The effect on global efficiency of targeted attack on
rich-club connections was compared with random damage to the net-
work. To simulate random attack, we randomly selected a set of O non-
rich-club connections of the brain network M w-nos and damaged this set
at two levels of ! (i.e., 50 and 100%).

Random attack to hub (non-rich-club) connections. In addition to the
random attack condition, in which any connection in the network could
be attacked, a more restricted random condition was examined, in which
damage was limited to the connections of the 12 rich-club nodes with the
rest of the network (i.e., excluding connections between rich-club mem-

bers). This condition serves to examine whether the effects of targeted
attack could be attributed to damaging the rich-club connections and not
to just to lowering the nodal degree of the hubs of the brain network,
regardless of whether they formed a club or not. Similar to the target
condition, damage was inflicted by reducing the weights of the connec-
tions of the selected random set by 50 or 100%, respectively, and the level
of global efficiency of the resulting damaged network M ! was computed.

For both conditions of random attack, the total weight (i.e., the sum of
the weights of the connections) of the damaged connections was equal to
the total damage to the rich club at level !. For each level of damage (i.e.,
50 and 100%), a sample of 10,000 random cases was examined.

High-resolution analysis
The main focus of this study is the examination of rich-club organization
of the human connectome. For this, we used a regional approach, par-
cellating the brain network in 82 brain regions. However, it has been
noted that graph metrics can be quite dependent on the resolution of the
network (van den Heuvel et al., 2008b; Wang et al., 2009; Fornito et al.,
2010; Zalesky et al.). In the absence of objective whole-brain parcellation
strategies that identify coherent brain regions based on anatomical or
functional criteria (Wig et al., 2011), some studies have advocated the use
of higher-resolution networks, going up to !1000 smaller parcels, in-
stead of using a coarse and to some extent arbitrary parcellation scheme
of 82 brain regions (Hagmann et al., 2008; van den Heuvel et al., 2008b).
We, therefore, performed an initial high-resolution network analysis,
examining rich-club organization at high resolution. This analysis in-
cluded the following steps. First, instead of parcellating the cortical sur-

Figure 4. Rich-club regions and connections. The figure shows rich-club regions and connections of the group-averaged
connectome (unweighted, k"17; Fig. 3a). Size of nodes reflect their number of connections, with bigger nodes representing more
densely connected regions. a, Anatomical perspective. b, Group-averaged connectome. c, Group connectome with rich-club
connections marked in dark blue. d, Connections between rich-club regions (dark blue) and connections from rich-club nodes to
the other regions of the brain network (light blue). The figure shows that almost all regions of the brain have at least one link
directly to the rich club. e, Rich-club connections.
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Weighted networks. Following a similar principle, for weighted networks, a
weighted rich-club parameter !w(k) was computed (Opsahl et al., 2008). First,
all connections of the examined network were ranked in respect by weight, re-
sultinginavectorWranked.Next,withinM, foreachvalueofk, thegroupofnodes
with a degree larger than k was selected. Next, the number of links E"k between
the members of the subset was counted, together with their collective weight
W"k, computed as the sum of the weights of the resulting E"k connections. The
weighted rich-club parameter !w(k) was then computed as the ratio between
W"k and the sum of the weights of the strongest E"k connections of the whole
network,givenbythetopE"k numberofconnectionsof thecollectionofranked
connections inWranked.Formally,!w(k) isgivenbythe following(Opsahletal.,
2008):

!w#k$ "
W"k!l%1

E"k wl
ranked. (2)

Normalization. The rich-club effect can be quantified by the rich-
club coefficient !(k). Since random networks—like the Erdos–Renyi
model—also show an increasing function of !(k), due to the fact that
nodes with a higher degree also have a higher probability of being
interconnected by chance alone, !(k) is typically normalized relative
to a (set of) comparable random network(s) of equal size and similar
connectivity distribution, giving a normalized rich-club coefficient
!norm (Colizza et al., 2006; McAuley et al., 2007). An increasing normal-
ized coefficient !norm of "1 over a range of k reflects the existence of
rich-club organization in a network. Therefore, in this study, for each
examined network the rich-club curve was compared with the rich-club
curve of a set of random networks, created by randomizing the connec-
tions of the network, keeping the degree distribution and sequence of the
matrix intact (Rubinov and Sporns, 2010). For each network, m % 1000
random networks were computed and from each of the randomized
networks, for each level of k, the rich-club coefficient !random (or
!random

w ) was computed. Next, the overall !random(k) was computed as
the average rich-club coefficient over the m random networks. The nor-
malized rich-club coefficient !norm(k) was computed as follows:

!norm#k$ "
!#k$

!random#k$
. (3)

For simplicity, in the remaining text, !norm(k) and !norm
w (k) will be re-

ferred to as !(k) and ! w(k), respectively.
Statistics. To assess statistical significance of rich-club organization, permuta-

tion testing was used (Bassett and Bullmore, 2009; van den Heuvel et al., 2010).
Obtained from the population of 1000 random networks (see above), the distri-
butionof!random(k)yieldedanulldistributionofrich-clubcoefficientsobtained
from random topologies. Next, for the range of k expressing rich-club organiza-
tion, it was tested whether ! significantly exceeded !random (averaged over the
examinedrangeofk)anda(one-sided) pvaluewasassignedto!as thepercent-
age of !random that exceeded !.

s-core decomposition
To further examine the organization of the connectome, the s-core struc-
ture of the group brain network was computed. The s-core is as a
weighted equivalent of the more commonly known k-core. The k-core of
an unweighted graph G is defined as the maximal connected subgraph of
nodes in G in which all nodes have at least k connections and in a similar
fashion, the s-core of a weighted graph Gw is the subgraph of nodes of Gw

in which all connections show a summed weight of s or higher. s-core
decomposition can provide insight into the hierarchical organization of a
network (Chatterjee and Sinha, 2008; Hagmann et al., 2008). s-core de-
composition proceeds by successively pruning the connections of the
network, along the following steps.

For a particular sum of weights s:
Step 1. Remove all nodes of whose sum of weights &s, resulting in a

pruned connectivity matrix M'.
Step 2. From the remaining set of nodes, compute the connectivity

strength s' for each node. If nodes are found that have a lower level of
connectivity than s', step 1 is repeated to obtain a new M'; otherwise,
proceed to step 3.

Step 3. The remaining subset of nodes forms the s-core of the network.

Finally, for each node i in the network its core-level can be determined,
as the maximal s-core node i is participating in. As such, a higher core-
level of a node expresses a more central role of the node in the overall
network.

Modularity, provincial and connector hubs
To examine the community (module) structure of the brain network,
and the role of hubs in interconnecting distinct modules, module parti-
tioning was performed (Rubinov and Sporns, 2010). Nodes identified as
hubs were further classified into “provincial” and “connector” hubs,
based on their level of participation in their local module and their level
of connectedness to other modules. The level of “intramodule” con-
nectivity versus “intermodule” connectivity of a node can be ex-
pressed by the “participation index” of a node (Sporns et al., 2007;
Rubinov and Sporns, 2010). The participation index is formally given
by the following:

Pindexi " 1 # !m%1
Nm "kim

ki
#2

, (4)

with Nm, the number of modules; ki, the degree of node i; and kim, the
number of connections from node i to module m. From the selected
hubs, connector hubs—interconnecting modules—were defined as
nodes with a Pindexi " 0.5, and provincial hubs— connecting nodes
within a module—were selected as nodes with a Pindexi $0.5, with

Figure 3. Rich-club functions of unweighted and weighted group networks. a shows the
rich-club !norm(k) curve for the unweighted structural group-averaged brain network (i.e.,
reflecting all direct connections between brain regions). The figure shows rich-club behavior of
the structural brain network, showing an increasing normalized rich-club coefficient !norm(k)
for a range of k from 11 to 17. b– d show rich-club values of the weighted group-averaged
structural brain networks ! w-nos(k) [weighted with the number of connectivity streamlines
(b)], ! w-nosROI(k) [weighted with the number of connectivity streamlines corrected for ROI
volume (c)], and ! w-fa(k) [weighted with the FA value of the white matter connections (d)].
The figures show the rich-club coefficient values for a range of k, for ! w (dark gray), !random

w

(light gray) and!norm
w (red). Similar to the unweighted network,! w is found to be larger than

!random
w , suggesting rich-club organization for all four variations of the structural brain

network.

van den Heuvel and Sporns • Rich-Club Organization of the Human Connectome J. Neurosci., November 2, 2011 • 31(44):15775–15786 • 15779



Networks can be found in many places, even in American 
football. 

American football is organized into regional conferences.

Teams within the conferences all play each other, but any given 
team will play far fewer matches with teams in other 
conferences.

Therefore, overall rankings of all teams are often unsatisfactory 
as they rely on ‘expert opinions’ or very complex and somewhat 
arbitrary algorithms.

Even more confusingly, a couple of teams aren’t part of any 
conference!

American Football network



A new approach:

We can draw a directed 
network between teams, 
where an edge signifies a 
win in a match, pointing 
from winner to loser. 

Since a team can beat 
another one twice in a 
season, this network is 
weighted.

The adjacency matrix is 
A, with entries aij.

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



The number of direct wins is now simply the out-degree:

where aij = 1 signifies that i has beaten j once.*

We can now however also consider indirect wins, which follow the 
argument

“A has beaten B, and B has beaten C, therefore A must be stronger than C.”

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).*In the original paper the notation convention is reverse.



The number of these indirect wins is given by the number of second-
nearest ‘out-neighbours’:

In this example, 

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



This can be generalized to a total win score wi defined as:

where b is a constant. This series will only converge if: 

Since the maximum eigenvalue lmax is the maximum factor by which the 
entries of a vector can increase after multiplication by the matrix A.

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



We can rewrite the win score as:

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



Similarly, we can define a loss score as:

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



We can then define a total score si as:

si = wi - li

which we will use to rank the teams.

Our equations for the win and loss scores in vector form are:

w = kout + b A w

l = kin + b AT l

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



w = kout + b A w

l = kin + b AT l

Solving these equations for w and l we get:

w = (I - b A) -1 kout

l = (I - b AT) -1 kin

But which b should we choose? 

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



We already know that b has to be smaller than lmax
-1. 

Importantly, lmax is zero if the network has no directed loops. 

This is because the adjacency matrix of a network without loops 
‘transports’ all vector entries to nodes with out-degree zero, where these 
entries are set to zero (as there are no self-loops).

If the network does have loops we have a choice of 

0 < b < lmax
-1

Let us look across a range of b and see how the algorithm performs.

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



The algorithm performs well for a broad range of b, and best 
around b = 0.8 lmax

-1.

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).
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The only problem is we do not know lmax until we have whole 
network, and we might want to use b to calculate results for the 
partial network.

But we can estimate lmax using a network with randomly assigned 
wins and losses, as this will provide an upper bound on the true 
lmax , being a network with more cycles. 

Consider the number of paths n(l) of length l, starting at a given 
node. It is important to realize that, in the limit of large l,  

lmax approaches n(l+1) / n(l)

i.e. it is the factor by which the number of paths increases if we 
increase the path length by one. This is equal to the

average out-degree of a node reached by following a random edge.

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



It is not simply the average out-degree, since out-degree and in-
degree can be correlated, and by walking along the edges of the 
network we are much more likely to walk into a node with high in-
degree.

Our probability of walking into a node with in-degree kin = i from a 
randomly selected edge is 

Pwalk(kin = i) = i P(kin = i) N / E = i P(kin = i)/<kin>

Note that <kin> = <kout> = E/N in directed networks.

Hence the probability of out-degree kout = j of a node we walk into is: 

Si P(kout = j|kin = i) Pwalk(kin = i) 

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



And the average out-degree of such a node, which corresponds to lmax is

lmax = Sij j P(kout = j|kin = i) Pwalk(kin = i)

lmax = Sij j P(kout = j|kin = i) i P(kin = i) / <kin>

lmax = Sij ij P(kout = j , kin = i) / <kin>

lmax = Sij ij P(kout = j , kin = i) / Sij i P(kout = j , kin = i) 

So we need the joint distribution P(kout = j , kin = i) for a random directed 
network with a fixed total degree distribution pk since the total number 
of games played by each team is fixed.

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



If the edge directions are chosen randomly, the joint in- and out-degree 
distribution takes the binomial form

P(kout = j , kin = i) = 2-(i+j) (i+j)Ci pi+j

Plugging this into

lmax = Sij ij P(kout = j , kin = i) / Sij i P(kout = j , kin = i) 

gives, after some algebra:

lmax = (<k2> - <k>) / 2 <k>

where k = i + j is the total degree of a node. Hence we can now choose 
b, calculate the score vector and predict American football!

American Football network

Park & Newman. J Stat Mech-Theory E, P10014 (2005).



THE END

Thank you for coming!


