
PHYSICAL REVIEW A 82, 043603 (2010)

Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition
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We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the
sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch
spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially
growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order,
the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show
that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The
critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors.
Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study
the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-
contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could
allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic
regimes.
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I. INTRODUCTION

A magnetic field tuned Feshbach resonance provides a
powerful tool to control the interaction parameters of ultracold
atomic Fermi gases [1]. The effective interaction between two
atoms in an s-wave scattering channel is attractive on one side
of the resonance and repulsive on the other side, with both
regimes diverging upon approaching the resonance. Over the
last few years experiments starting from the attractive side have
investigated the crossover from a Bardeen-Cooper-Schrieffer
state of fermion pairs to a Bose-Einstein condensate of tightly
bound molecules [2]. On the other hand, a recent experiment
has provided the first possible evidence for a transition to an
itinerant ferromagnet beyond a critical interaction strength in
the repulsive regime [3]. If confirmed, this new realization of
ferromagnetism may not only resolve long-standing questions
stemming from the solid state but also promises to open up
new arenas of ferromagnetism research [4–8].

When considering the repulsive side of the resonance
however, it must be noted that the repulsive Fermi gas is
only a metastable state. The two-body ground state in this
regime is a “Feshbach molecule”, a bound state with negative
energy. Correspondingly, the many-fermion ground state is
the molecular Bose-Einstein condensate (BEC), whereas the
repulsive Fermi gas arises only if the system is specially
prepared without molecules. Even then, atoms gradually
recombine to form Feshbach molecules. At least in the low
density limit, this occurs predominantly through a three-body
process [9], whereas closer to the resonance the loss may
reflect competing many-body instabilities [10]. An experiment
as in Ref. [3] must therefore be performed inherently out of
equilibrium. To abate the fall in atom density the experiment
was performed while tuning the interaction parameter rapidly,
but this however masks the true phase transition [11,12].
Moreover, it has been shown that even if the atom number
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is kept constant by coupling the system to an atom reservoir,
the nonequilibrium conditions imposed by the three-body loss
act to change the nature of the ferromagnetic transition through
an inherently quantum mechanism [13].

In this paper we propose a different strategy to investigate
the Stoner transition, which could allow investigators to
circumvent the difficulties imposed by atom loss. The idea
is to study the dynamical stability of a nearly ferromagnetic
state, or more precisely a spin spiral of small wave-vector Q, as
shown in Fig. 1(b). This state has minimal three-body losses as
it is locally fully polarized. On the other hand, the dynamical
stability of the spiral spin texture is not protected by spin
conservation because the system has zero net magnetization.
To take advantage of this protocol it is first vital to determine
how the modes of instability change when we tune the system
across the Stoner transition. For an interaction strength tuned
so that ferromagnetism is favored, the exponentially growing
unstable modes are expected to reorient the spins, as seen in
Fig. 1(c), and eventually cause the system to fragment into
polarized domains. A similar collective modes structure was
observed in a bosonic ferromagnetic gas [14]. Unlike when
ordering from the paramagnetic state [11], the size of these
domains and the collective mode structure can be finely tuned
with the length scale of the initial spin spiral.

On approaching the Stoner transition we find critical
slowing down of the unstable modes. However, counter to
initial heuristic expectations, the unstable modes of the helical
spin state are, to linear order, the same on the two sides of
the transition. To differentiate between the ferromagnetic and
paramagnetic regimes we go beyond the linear analysis and
study the feedback effect due to the scattering of collective
excitations off the exponentially growing modes. As the
phenomena investigated are not only of conceptual interest
but could also provide a protocol for the next generation of
experiments, we also consider the ramifications of a realistic
harmonic trapping potential and the experimental probes of
the collective modes.
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FIG. 1. (Color online) (a) The gas is started in a fully polarized
state and (b) a normal magnetic field B (purple arrows) is applied
to form a spin spiral of pitch 1/Q. When the interaction strength
is ramped upward (c) the spins rotate into the y direction forming
a fully polarized state (which we later show has a long wavelength
modulation). The thickness of the green plane indicates the growing
magnetization. In (b) and (c) the axis basis set co-rotates with the
spin spiral.

II. FORMING THE SPIN SPIRAL

To form the initial spin spiral, the atomic gas is first
prepared in a fully polarized phase, say along the z-spin axis
shown in Fig. 1(a), and a magnetic field gradient is imposed
perpendicular to the magnetization axis (e.g., B = byx̂) for
time t . Such a field can be thought of as a gradient of the relative
potential between the ↑x and ↓x spins, and leads to a (constant)
relative acceleration between these two spin components in the
coherent spin state. The result is a spiral spin texture, as shown
in Fig. 1(b), with wave vector Qy = (µBgJt/h̄)dBx/dy, where
gJ is the g factor. The twist rate is independent of the spin
stiffness and the strength of the repulsive interactions between
particles. This is in close analogy to the effect of a potential
gradient placed across a superfluid, which is essentially a
XY (“phase”) ferromagnet. The potential gradient affects
phase twist at a constant rate, independent of the superfluid
stiffness, which corresponds to free acceleration according to
Newton’s law.

To gain further understanding into why interactions do not
impact on the dynamic formation of the initial spin spiral
we can study the system within the simple setting of the
Heisenberg ferromagnet. Then, the situation posed in Fig. 1 is
described by the Hamiltonian Ĥ = −J

∑
〈ij〉 Ŝi · Ŝj − b

∑
i

yi Ŝ
x
i , where the first summation covers nearest neighbors on

the lattice, J denotes the coupling between adjacent sites, and b

is the magnetic field gradient. The initial conditions are Sx
i (t =

0) = 0, Sy
i (t = 0) = 0, and Sz

i (t = 0) = S0. We then study the
evolution of the spins using h̄Ṡ = i[Ĥ ,S], finding the equations
of motion h̄Ṡx,i = 0, h̄Ṡy,i = byiSz,i , and h̄Ṡz,i = −byiSy,i ,
where the components containing J cancel exactly. Finally,
we can then solve the equations of motion to yield Sx,i(t) = 0,
Sy,i(t) = S0 sin(byit/h̄), and Sz,i(t) = S0 cos(byit/h̄). These
show that the formation of the spin spiral by the external
magnetic field gradient is independent of the interactions, J ,
between particles.

An interesting and beneficial practical implication of the
above observation is to alleviate the need to first form a spiral,
and then perform a Feshbach field quench. The spin spiral may
equally well be formed with the Feshbach field in place. Finally
we note that a magnetic field gradient has the side effect of
imparting a translational force on the gas perpendicular to the
gradient. Fortunately, in this scheme we need to impose only a
long-pitched spin spiral, which requires only a weak magnetic
field gradient with minimal side effect.

Following the preparation stage, we are ready to allow
the spiral state to evolve under the influence of the repulsive
interactions tuned by the Feshbach field, and track its evolution
into the polarized state out of the plane of the initial spiral
shown in Fig. 1(c).

III. LINEAR SPIN-WAVE INSTABILITY

We now investigate the instabilities of the helical spin state
by first focusing on the linearized spin fluctuations around
the initial spin spiral. The exponentially growing unstable
modes will show up in this analysis as collective excitations
with imaginary frequencies. As the dominant modes grow
exponentially, nonlinear processes become important. Later
in Sec. IV we will study how scattering off the exponentially
growing modes renormalizes the spectrum.

To study the collective modes we start from the quantum
partition function expressed as a fermionic coherent state
path integral, Z = Tr e−β(Ĥ − µN̂ ) = ∫ Dψe−S, with the
corresponding action

S =
∫ ∑

σ={↑,↓}
ψ̄σ (∂τ + εk̂ − µ)ψσ +

∫
gψ̄↑ψ̄↓ψ↓ψ↑, (1)

where Dψ = limN→∞
∏N

n=1 dψ(τn)dψ̄(τn),τn = βn/N ,
∫ ≡∫ β

0 dτ
∫

dr, the free particle dispersion is εk = k2/2, µ is the
chemical potential, and gδ3(r) is the strength of the s-wave
repulsive contact interaction. We have also set h̄ = m = 1.
To explore how interactions impinge on the collective mode
spectrum we affect a Hubbard-Stratonovich decoupling, which
incorporates the spin channels φ0 + φ [6,15]. The static
component of the magnetization, φ0, follows the initial helical
spatial spin texture and φ represents the growing unstable
modes and fluctuations around that stationary component.
It is also convenient to apply a gauge transformation ψ �→
ψeiQ · rσx/2 to enter a spatially rotating basis set with pitch
vector Qex/2, which renders the initial spin texture, and thus
also the static component of the magnetization to be uniform,
φ0 = (0,0,φ0).
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FIG. 2. (Color online) The variation of the exponential growth rate of the collective mode at wave vector q with interaction strength kFa.
Calculated for an initial seed field of size (a) 	 = 0, (b) 	 = 0.1Q2/g, and (c) 	 = 0.2Q2/g. The fields {θ,ϕ} are evaluated at wave vector q,
and η at wave vector q ± Q; we focus on the peak contribution to the growth with q ‖ Q. The black trajectory highlights the maximum growth
rate at a given interaction strength.

After integrating out the Grassmann fields we obtain Z =∫
Dφe−S with the action

S =
∫

gφ2
0 − Tr ln

(
Ĝ−1

0

)
+
∫

gφ2 − Tr ln

[
I + Ĝ0

(
1

2
σxQ · k̂ − gσ · φ

)]
, (2)

where Ĝ−1
0 = ∂τ + εk̂ − µ − gσzφ0 = Ĝ−1

σz
denotes the el-

ements of the inverse Green function at the level of the
renormalized mean field. We then expand in the perturbative
collective modes φ. We assume that the initial spin spiral has
a long wavelength relative to the Fermi wave vector kF, so
we work in the regime Q 
 kF. Focusing on the soft modes
that are perpendicular to the saddle point field, the dispersion
satisfies ω 
 µ and has wave vector q 
 kF. Following the
expansion for the soft modes we get the contribution to the
action from fluctuations

S =
∫

g
(
φ2

x + φ2
y

)+ Tr

{
Ĝ+

[
Q · k

2
− g(φx − iφy)

]
Ĝ−

×
[

Q · k
2

− g(φx + iφy)

]}

+ 1

2
Tr

{
Ĝ+

[
Q · k

2
− g(φx − iφy)

]
Ĝ−

×
[

Q · k
2

− g(φx + iφy)

]}2

. (3)

Before searching for the collective modes it is use-
ful to transform the basis set for the magnetization
from Cartesian to spherical polar coordinates: φ = φ0

[1 + η](cos θ, sin θ sin ϕ, sin θ cos ϕ). Note that θ is defined
as the angle with respect to the positive x axis, and ϕ is the
angle from the z axis of the projection of φ onto the yz plane.
The initial state is θ = π/2 and ϕ = 0, which ensures that
fluctuations in ϕ are well defined. With this definition we
expand in small thermal and quantum fluctuations away from
the fully polarized state that are both angular ϕ and θ (now
redefined to be centered around π/2), and also in the amplitude
of the mode, η. The perturbative form for the expansion correct

to quadratic order is φ = φ0[1 + η](−θ,ϕ,1 − [θ2 + ϕ2]/2).
Although both Cartesian and spherical polar basis sets yield the
same collective mode structure in this linear response analysis,
when in Sec. IV we consider feedback corrections to this
response it will be necessary to work with the spherical polar
basis set to properly evaluate phase and amplitude fluctuations.
To study the system with only linear response we expand G±
in ω and q and find that the soft modes are coupled in the
action through

S = S0Tr

{
( θ�

q,ω ϕ�
q,ω )

(
χ [q2 − Q2] iω

−iω χq2

)(
θq,ω

ϕq,ω

)}
,

(4)

where χ = 1
2 − 22/33

5kFa
, q2 = q2

x + q2
y + q2

z , and S0 = 21/3

βφ0kFa/π . Note that the Hartree-Fock scheme we employed is
of first order in the interaction and ultraviolet divergencies do
not arise in it. At this order the replacement of the microscopic
parameter g with the s-wave scattering length is simply
g �→ 2kFa/πν + O[(kFa)2] [18].

Due to their commutation relations, the conjugate modes
θ and ϕ are coupled by the off-diagonal elements and so to
extract the dispersion we demand that the determinant of the
matrix is zero. This yields the dispersion

ω = ±χq
√

q2 − Q2, (5)

which is shown in Fig. 2(a). We first verify the dispersion in
the absence of the spin spiral. When Q = 0 and interactions
are strong so χ → 1/2 we recover the familiar dispersion
of a single particle, ω = q2/2. When q < Q the dispersion
is imaginary, corresponding to an instability, whereas when
q > Q we recover oscillating modes. Note that, as required
by spin conservation, there is no dynamical instability of
the magnetization at zero wave vector. Similarly growth at
q = Q is stunted as this mode is initially fully polarized. The
exponential growth of the order parameter is maximal at the
wave vector q = Q/

√
2, and it is at this length scale that

we would expect to see ferromagnetic domains emerge. In
the experiment [3] domain walls could not be observed in a gas
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starting from a paramagnetic state since their size falls below
the resolution of current experimental techniques [11], but here
their length scale can be tuned to be experimentally observable
by changing the pitch of the spin spiral. The fully polarized
phase becomes unstable at the critical interaction strength
kFa = 25/33/5 ≈ 1.90. At this interaction strength χ = 0 so
the system undergoes critical slowing and the characteristic
time of the instability diverges.

Against intuitive expectations we find the same collective
mode structure, to linear order, on either side of the transition.
To gain insight on this, it is useful to study the linear stability
of a spiral texture in the Heisenberg model on a lattice Ĥ =
−J

∑
〈ij〉 Ŝi · Ŝj . Here 〈ij 〉 restricts the summation to nearest

neighbors and J denotes the coupling between adjacent sites.
A straightforward spin wave analysis of the fluctuations about
the spiral texture yields the collective mode dispersion

ωH = 4JS

√
cos2(Qa) sin2

(qxa

2

)
+ sin2

(qya

2

)
+ sin2

(qza

2

)√
sin2

(qxa

2

)
+ sin2

(qya

2

)
+ sin2

(qza

2

)
− sin2

(
Qa

2

)
, (6)

where a is the lattice spacing. Note that in the limit qa 
 1
and Qa 
 1 the collective mode dispersion Eq. (6) computed
in the Heisenberg model approaches the same form Eq. (5)
developed in the continuum case. Tuning the coupling from
ferromagnetic to antiferromagnetic through criticality at J = 0
is allied with a vanishing dispersion, as found at the Stoner
transition of the Fermi system. The anisotropy introduced by
the first root gives a preference to modes with a wave vector
in the plane of the spiral.

We note that the equivalent dynamics of the initial spin-
spiral seen for positive and negative J is due to an exact
symmetry of the Heisenberg Hamiltonian. This can be shown
by a variation on the arguments presented in Ref. [16], which
is valid for initial states invariant under some generalized time
reversal transformation. Such an exact symmetry does not
exist in the itinerant fermion model of interest here. Rather
the symmetry of the collective mode dispersion around the
dynamical critical point is an emergent phenomenon, and as
we shall see later in Sec. IV, valid only within the linear
approximation of the dynamics.

Before proceeding we discuss the validity of our calculation
scheme. First, let us revisit the initial assumption that the three-
body loss may be neglected in the proposed setup. To assess the
validity of this assumption we shall compare the loss rate in the
spin spiral to the growth rate of the maximally unstable mode
around this spiral state. The three-body loss rate (strictly valid
for kFa 
 1) is 111ε̄(kFa)6n↑n↓(n↑ + n↓) [9]. To evaluate
this we note that adjacent spins in the spiral, separated by
rs = (2/9π )1/3k−1

F , have an angle between them of Qrs 
 1.
Therefore the adjacent spins give a geometric component of
n↑n↓ = (2/9π )2/3n2(Q/kF)2/4. Applying this to the experi-
mental regime gives the loss rate 0.12(kFa)6(Q/kF)2s−1.

On the other hand, the growth rate of the dominant
mode, according to Eq. (5), is maxq{Im[ω(q)]} = (1 −
25/33/5kFa)Q2/4. Interestingly we observe that the ratio of
loss to growth rate depends only on the interaction strength
and not on the spiral pitch Q. Comparing the two rates
we find that the loss will dominate for strong interactions
kFa >∼ 4.9, though in this regime the formula for loss rate
significantly overestimates the true loss [17] and in fact the
theory should be valid for even higher interaction strengths.
However, in the experimentally accessible region including
the phase transition, kFa < 2.5, loss is more than 60 times
smaller than the dominant growth rate of the collective modes.

Therefore the new experimental protocol offers a promising
way to observe magnetism without the damaging effects of
loss. In addition, losses will dominate within a small region of
width δ(kFa) ∼ 0.03 surrounding the point of critical slowing
down. However, we shall see in the next section that nonlinear
feedback effects drive a new dynamical instability at large
wave vectors precisely in the region of critical slowing down,
and that this instability will overcome the losses.

Finally, we comment on the validity of the Hartree-
Fock approximation, which was used to obtain the unstable
collective mode frequencies of the initial spiral configuration.
A uniform fermionic gas with repulsive interactions undergoes
a Stoner transition at an intermediate coupling strength. In
this regime there is no small parameter to keep the quantum
fluctuations around the assumed ordered state under rigorous
control. However, we are in a much better position to use the
Hartree-Fock program to study the instabilities of the spin
spiral state. Contrary to the analysis of the uniform system,
we do not have to expand about a putative ordered state that
may not be the true ground state. Instead, the spiral ordered
state was specifically prepared by the experimental protocol,
and therefore there is no question regarding its existence at
small times. Furthermore, the effective interaction strength,
and concomitantly the quantum fluctuations are suppressed by
the pitch of the spiral Q and vanish as Q → 0. In this limit,
the fully polarized ferromagnetic state is an exact eigenstate
of the Hamiltonian. The approximation breaks down at long
times, when the unstable modes, presumed to be small in the
above linear analysis, grow to be of the same order as the initial
spin spiral order parameter. Therefore in the next section we
study these nonlinear corrections in detail. In particular, at
the point of critical slowing down where the linearized
collective modes vanish, we find that the nonlinear corrections
will give the leading contribution.

IV. NONLINEAR COLLECTIVE MODES

In the previous section we found that the behavior of the
collective modes spectrum with interaction strength is qual-
itatively similar either side of the critical interaction strength
kFa = 25/33/5. However, for the Fermi system this is only a
feature of the linear analysis, which we now extend to include,
self-consistently, the effect of the scattering of fluctuations
on the exponentially growing modes. These will become
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significant when the linear modes have grown to be
comparable to the initial spin spiral, which occurs at time
scales t > 2/χQ2. We will see that this mechanism also
eliminates the region of critical slowing down by generating
new unstable modes at high wave vectors near to the critical
interaction strength.

We focus solely on the consequences of scattering off a
single dominant growth mode �P. According to the analysis
of Sec. III, the momentum P associated with the dominant
mode is Q/

√
2, though here we allow a general wave vector

that we will later determine self-consistently. In the presence
of the large mode 	P, we have to expand the action Eq. (2)
to cubic order to include terms which are linear in 	P and
quadratic in the other modes

S	 =
∫

g3Tr [G−(	x + i	y)G+φzG+(φx − iφy)

− .G+(	x − i	y)G−φzG−(φx + iφy)], (7)

where G± = ∂τ + εk̂ − µ ∓ gφ0. This new scattering mech-
anism couples the {φx,φy} channels to the φz channel, and
so describes scattering out of the original magnetization
configuration and into the dominant growing mode. The
presence of a growing classical field 	(t) = 	(0)ei�τ (with
imaginary frequency �), requires a seed fluctuation in the
initial spiral state. Such a seed will be present in any realistic
implementation because of random inhomogeneity in the
magnetic field and thermal fluctuations.

We again transform to the spherical polar basis set to
properly separate phase (θ,φ) and amplitude η fluctuations.
Coupling to the exponentially growing mode of wave vector
P and frequency � requires studying the spin suscepti-
bility matrix expanded out to include couplings between
other modes at wave vectors q and q ± P, and frequen-
cies ω and ω ± �. The coupled action then takes the
form

S = S0 Tr

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
(
θ−ω
−q ϕ−ω

−q η−ω−�
−q−P η−ω+�

−q+P

)
⎛
⎜⎜⎜⎜⎜⎝

χ [q2 − Q2] iω ζ ζ

−iω χq2 ζ ζ

ζ ζ 3EF
2

[
χ − π(ω+�)√

2EF|q+P|
]

0

ζ ζ 0 3EF
2

[
χ − π(ω−�)√

2EF|q−P|
]

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

θω
q

ϕω
q

ηω+�
q+P

ηω−�
q−P

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (8)

where ζ = 3EFθs(1 − 22/39
5kFa

)/2, EF is the polarized state Fermi
energy, and θs denotes the seed field size for either θ or ϕ. The
expansion in frequencies employed for the amplitude modes,
η, applies for ω 
 q, which holds for the regime of interest
that describes the coupling the soft angular modes to the
amplitude modes. We again search for the zeros in the resultant
determinant to extract the collective modes and explore the
unstable region. Note that in the absence of the growing field,
the formalism immediately recovers the dispersion found in
Sec. III. However, here we aim to go further and consider the
form of the modes in the presence of the dominant growing
field. To ensure that the formalism is self-consistent at each
interaction strength we first compute the feedback-corrected
dominant mode before calculating the entire collective modes
spectrum in the presence of that growing mode. We also note
that this formalism respects the the spin conservation law, and
so, as in the linear analysis of Sec. III, growth of the uniform
component of the magnetization is suppressed.

The final result for the spectrum is shown in Fig. 2 for
different values of the seed field. First we note that for
interaction strengths far from the critical slowing, scattering
on the growing mode is negligible. In particular the dominant
growth mode remains at ∼Q/

√
2 in this regime. However,

near to critical slowing the wave vector of the dominant
growth mode can be enhanced. This can be understood by
comparing the on- and off-diagonal elements of the action
matrix, Eq. (8). Upon nearing critical slowing, the on-diagonal
elements, being proportional to χ , approach zero. However,
the off-diagonal terms, ζ , that represent scattering off the
dominant growing modes are nonzero. To ensure that the
overall determinant is zero demands a nonzero value for

the on-diagonal elements which requires a large wave vector.
On approaching critical slowing this growth in the wave vector
would only be curtailed by higher order momentum terms. A
detailed analysis shows that the wave vector of the peak growth
tracks the trajectory along the critical slowing at kFa = 25/33/5
in the phase diagram, Fig. 2. The peak growth at a particular
wave vector q is when that wave vector q is parallel to the
direction of Q, and so we focus on that contribution in Fig. 2.
On the paramagnetic side of the resonance, kFa < 25/33/5, the
enhanced scattering into the higher momentum sector removes
long wavelength components of the domains, whereas on the
ferromagnetic side of the resonance, kFa > 25/33/5, the larger
domains are naturally still favored. Therefore, consideration
of the feedback of the exponentially growing field yields an
additional collective mode structure that could experimentally
distinguish between the two sides of the critical slowing
interaction strength.

This picture was developed in the presence of just a single
growing exponential mode, whereas in reality these seed
modes have an initial growth rate ∼χq

√
Q2 − q2 [Eq. (5)]

centered around the wave vector q = Q/
√

2 corresponding
to maximal growth. With reference to Fig. 2, except near
to critical slowing, at a given interaction strength the mode
growth rate is sharply peaked as a function of q so that
the presence of other less dominant exponentially growing
modes blurs the collective modes dispersion by less than 5%.
The relative initial size of those modes can however have an
impact on the mode spectrum. Created by inhomogeneities in
the applied magnetic field, the uncertainty can correspond to
seeing a range of growth rates, for example the range spanning
between Fig. 2(a) and (c). Though the growth rate around
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critical slowing is quantitatively different, the qualitative
features are robust and the dominant growth wave vectors
remain the same, so in the experiment strong signatures of
ferromagnetism should be observed.

V. EXPERIMENTAL OBSERVATION

Having studied the instability to a ferromagnetic state in
a uniform gas we now turn to consider the experimental
ramifications of our results. We will focus on two key
questions: first the consequences of the atomic gas being held
within a realistic harmonic trapping potential, and second we
address the experimental signatures of our predictions.

We shall treat the harmonic confinement within the local
density approximation. On passing radially outwards from
the center of the harmonic well the local density and therefore
the effective interaction strength falls. We can therefore
use the results of the previous sections to map the rate at which
the instability develops and its characteristic wavelength as a
function of the radius. These results are shown in Fig. 3 for both
the linear analysis (a) and when the feedback due to scattering
on the growing mode is taken into account (b). Note significant
modifications due to feedback corrections. First near the radius
which corresponds to critical interactions there is a distinct
maximum rather than a vanishing growth rate. The enhanced
growth rate is driven by a scattering off the growing mode
into large wave vectors. Therefore, secondly the characteristic
wavelength of the unstable modes dips around that radius. In
the linear analysis, by contrast the characteristic wavelength
of the unstable modes is everywhere 2π

√
2/Q.

We now turn to the question of how the distinct spatial
structure of the instability may be observed in an experiment.

0
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(b) Feedback corrected
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(a) Linear instability
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FIG. 3. (Color online) The variation of growth rate (red solid,
primary y axis) and domain size (blue dashed, secondary y axis) with
radius within a harmonic well. (a) corresponds to linear response,
and when (b) feedback corrections with a seed field of size 0.2Q2/g

are taken into account. The vertical cyan line denotes the radius
corresponding to critical slowing and rmax is the outer radius of the
atom distribution.

The first approach we look at is to employ differential
in situ phase-contrast imaging, a method that has already been
used on the ferromagnetic cold atom gas [3]. This measures
the difference between the up and down-spin populations inte-
grated along vertical columns through the gas. If the procedure
is repeated across the gas, a two-dimensional map will be pro-
duced, which is governed by the pattern of the emergent mag-
netization aligned normal to the imaging plane. Once Fourier
transformed, the spectrum of this map will reveal the typical
magnetic domain size. To simulate the expected experimental
result we employ a heuristic model of the gas. We divide the
system into domains, with position dependent size, determined
by the wavelength of the dominant growth mode at that radius.
Each domain is then assigned either up or down magnetization
at random, and the resulting magnetization structure is column
integrated to obtain a two-dimensional magnetization image as
in the experiment. The power spectrum of the domain structure
in the simulated image is shown in Fig. 4. Without feedback
corrections, according to Eq. (5) the dominant mode is at q =
Q/

√
2 irrespective of interaction strength. In the numerical

experiment a distinct peak exists at wave vectors around and
below Q/

√
2; this is because adjacent domains were not

necessarily misaligned thus increasing the effective length
scale of the observed domains. If feedback corrections are
taken into account then in the region of the trap corresponding
to critical slowing significantly smaller domains are formed.
This is reflected in the Fourier spectrum with reduced weight
at small wave vectors, and enhanced weight at larger wave
vectors. By tuning with either the size of the seed field or the
duration of the experiment, the signal of the contrasting be-
havior when feedback corrections are taken into account could
help investigators to identify the ferromagnetic transition.

One criticism of the recent experiment [3] which reported
the first signs of ferromagnetism is that the domains, if present,
were too small to image. In the experimental protocol the
pitch length of the initial spin spiral sets the size of the
domains formed. However, if this length scale remains below
the resolution of the experiment then a statistical analysis of the
in situ phase-contrast imaging could still provide an estimate of
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FIG. 4. (Color online) The Fourier transform of the domain
distribution within a harmonic well. Without magnetization feedback
is shown by the red solid line, and the blue dashed curve is in the
presence of magnetization feedback. The peak growth rate at Q/

√
2 is

labeled by the vertical cyan (left) line, whereas the maximum growth
wave vector Q is shown by the vertical green (right) line.
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the domain size. If the orientation of adjacent domains within
a column is independent, then measurements over adjacent
columns will give an estimate of the variance of magnetization
in each column. The uncertainty in the net magnetization
should vary as sN/4

√
n, where s is the spin per atom, N

the number of atoms imaged, and n the number of domains.
A larger number of domains will result in a smaller variance
in the net magnetization, thus allowing the total number of
domains to be estimated.

One final experimental probe is spin-dependent Bragg
spectroscopy. This could track the decay of the planar spin
spiral and the reducing signature at wave vector P. Further-
more, using a variable wavelength optical lattice potential to
couple asymmetrically to the spin degrees of freedom, the
collective mode response could be studied through dynamical
fluctuations of the cloud spatial distribution as a function of
wavelength, laser amplitude, and detuning.

VI. CONCLUSIONS

We have studied the time evolution of a spiraling spin
texture, prepared by a magnetic field gradient in an interacting
degenerate Fermi gas. The linearized dynamics of the mag-
netization shows an instability, which develops canting out
of the spiral plane, with the maximally unstable mode at a
wave vector 1/

√
2 that of the original spiral. The instability

grows exponentially in time with a characteristic time scale
that vanishes close to the Stoner transition point. To linear

order, the dynamics is the same on the ferromagnetic and
paramagnetic sides of the critical slowing down.

Interestingly, however, we find that near the critical point,
nonlinear effects in the dynamics become important. Specifi-
cally, scattering of collective excitations on the exponentially
growing unstable mode acts to renormalize the spectrum,
shifting the instability to larger wave vectors on approaching
the original critical point. Moreover the point of critical slow-
ing is eliminated and the branch of excitations at high wave
vectors allows a clear distinction between the ferromagnetic
and paramagnetic regimes.

Finally, we studied the experimental signatures of the
unstable dynamical modes in a realistic trap confinement.
Using the calculated dispersion of unstable modes we obtained
the spatial distribution of spin-domain sizes in the trap, which
may be observed with phase contrast imaging. The most
dramatic signature of the branch of instabilities induced by
the nonlinear feedback effect is a collapse of the domain size
at a particular critical radius in the trap.
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